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Embedded devices Need Lightweight Neural Networks

Servers Embedded devices

● Powerful 💪
● Handle full size models 🧠

● Limited resources 🤖
● Require lightweight models 🪶
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How to design lightweight networks ?
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Existing network compression methods

● Neural network distillation
● Weight quantization
● Neural Architecture Search
● Pruning

○ Structured
○ Unstructured

4



Existing network compression methods

● Neural network distillation
● Weight quantization
● Neural Architecture Search
● Pruning

○ Structured
○ Unstructured

4

Our method relies on unstructured pruning



Our method is not a typical pruning method

✅ Automatic pruning rate

💡 No weight training
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✅ Automatic pruning rate

💡 No weight training

 

➡ performs topology selection
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How unstructured weight pruning works ?
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Unstructured weight pruning yields lightweights networks
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● weights removed individually

● Flexible ✅
 

● High sparsity rate ✅

{Le Cun et al. 1990; Hassibi et al. 1993; Han et al. 2015}



Typical pruning pipelines rely on weight training

8



Typical pruning pipelines are composed of 3 steps
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● 3 steps procedure
train - prune - fine-tune

● Pruning criterion depends 
on the method

● Fine-tuning needed 
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What if we do not train the weights ?
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Zhou et al. train the Supermask

● mask sampled from Bernoulli 
distribution
 

● optimize only m

{ Zhou et al. NeurIPS 2019 } 11



Zhou et al. train the Supermask

● mask sampled from Bernoulli 
distribution
 

● optimize only m

❌ Basic mask parametrization  with Straight Through
❌ Cumbersome weight rescaling

{ Zhou et al. NeurIPS 2019 } 11



Ramanujan et al. take the top-k weights in each layers

{ Ramanujan et al. CVPR 2020 }

● top-k element of s are selected
 

● top-k elements are chosen per layer
 

● k depends on the pruning rate
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Ramanujan et al. take the top-k weights in each layers

❌ Pruning rate has to be known in advance
❌ Same pruning rate for all layer
❌ Best pruning rate if found by grid search ➡ computationally expensive 💰
❌ Best pruning rate depends on the network architecture

{ Ramanujan et al. CVPR 2020 }

● top-k element of s are selected
 

● top-k elements are chosen per layer
 

● k depends on the pruning rate
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Our Method
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Our method characteristics
● We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
✅ better performances than Straight-Through
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Our method characteristics
● We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
✅ better performances than Straight-Through
 

● Pruning rate is not needed
✅ No computationally intensive grid search
 

● Learnt weight rescaling factor
✅ Faster inference time and lower overhead

● No weight training
💡 Topology selection only
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Each weight as a probability of being selected
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Our method performs topology selection only
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● No weight training or 
fine-tuning ⚠

● Topology selection only
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Topology are selected with a stochastic mask
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Layer equation : 

binary masks tensor weights tensor



Topology are selected with a stochastic mask

17

Layer equation : 

binary masks tensor weights tensor

each coefficient follows Bernoulli distribution :

Probability for a weight to 
be selected



Topology are selected with a stochastic mask

17

Layer equation : 

binary masks tensor weights tensor

each coefficient follows Bernoulli distribution :

Probability for a weight to 
be selectedSampling is not differentiable ⚠



Probability is reparametrized 
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Probability reparametrization :

Sigmoid ensures 

Learnt variable



Naive Straight Through Gumbel-Softmax is flawed
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Probability reparametrization :

Naive Straight Through Gumbel-Softmax 
formulation :



Naive Straight Through Gumbel-Softmax is flawed
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Probability reparametrization :

Naive Straight Through Gumbel-Softmax 
formulation :

Combination of log and exponential functions :

❌ Numerical instabilities 
❌ Computationally intensive



ASLP is simpler and resolves issues

20

Probability reparametrization :

Our formulation Arbitrarily Shifted Log Parameterization (ASLP)



ASLP is simpler and resolves issues
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Probability reparametrization :

Our formulation Arbitrarily Shifted Log Parameterization (ASLP)

✅ Numerically stable
✅ Less computationally intensive



ASLP formulation implies the same parametrization for Psel
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Our formulation :

Arbitrary unknown constant that shifts log probabilities

Same reparametrization💡Adding a constant does not change the result of STGS



Pruning weights affects the signal propagation dynamic

22



Smart rescale is a simpler and useful weight rescaling

● Scaling learnt per layer

● Mitigates the change of 
variance due to pruning
 

● Improves performances
 

● Reduces number of epochs 
needed for convergence
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✅ Less computationally intensive than Zhou et al. weight rescaling



Results
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Results : Our method performs better on various cases  
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WR = Weight Rescale, SC = Signed Constant, DA = Data Augmentation

[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019
[2] V. Ramanujan, et al. “What’s hidden in a randomly weighted neural network?,” in CVPR, 2020

EP (Edge-Popup)1, Supermask2
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Smart Rescale is faster than DWR1 and accelerate convergence

● Smart rescale overhead 0.13s 
 

● DWR1 overhead 0.2s
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Smart Rescale is faster than DWR1 and accelerate convergence

● Smart rescale overhead 0.13s 
 

● DWR1 overhead 0.2s

26[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019

✅ SR overhead 35% faster

● # Epochs reduction : 
○ 8.2% (Conv2)
○ 19.7% (Conv4) 
○ 14.0% (Conv6)



Results : On CIFAR100 ASLP performs better on most cases
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Results with Weight Rescale (WR) and Signed Constant (SC)

V. Ramanujan, et al. “What’s hidden in a randomly weighted neural network?,” in CVPR, 2020



Sum Up
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Sum Up

● Prune untrained networks ➡ topology selection only
 

● Gumbel Softmax ➡ differentiable sampling
 

● ASLP : 
○ simpler formulation
○ ✅ less computationally intensive
○ ✅ numerically stable

 
● Smart Rescale : 

○ ✅ improves performances 
○ ⏱ reduces number of epochs

 
● Our method yields lightweight networks 🪶,  without weight training.
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A few perspectives
● Test ASLP on other network architectures and datasets

 
● Reduce training time

 
● Test ASLP on other context and applications
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Code available at:
github.com/n0ciple/aslp


