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Embedded devices Need Lightweight Neural Networks

Servers Embedded devices

| —

e

e Powerful e Limited resources gy
e Handle full size models “& e Require lightweight models ™



How to design lightweight networks ?



Existing network compression methods

Neural network distillation
Weight quantization
Neural Architecture Search
Pruning

o Structured

o Unstructured
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Neural Architecture Search
Pruning

o Structured

o Unstructured

Our method relies on unstructured pruning



Our method is not a typical pruning method

|4 Automatic pruning rate

. No weight training



Our method is not a typical pruning method

.4 Automatic pruning rate

. No weight training performs topology selection



How unstructured weight pruning works ?



Unstructured weight pruning yields lightweights networks

e weights removed individually

e Flexible | 4

e High sparsity rate | 4

Before pruning After pruning

{Le Cun et al. 1990; Hassibi et al. 1093; Han et al. 2015}



Typical pruning pipelines rely on weight training



Typical pruning pipelines are composed of 3 steps
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e Pruning criterion depends
on the method
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What if we do not train the weights ?



Zhou et al. train the Supermask

W « Bern(o(m)) © W e mask sampled from Bernoulli
l l l distribution

{Zhou et al. NeurIPS 2019 }

11



Zhou et al. train the Supermask

e mask sampled from Bernoulli
distribution

e optimize only m

X Basic mask parametrization with Straight Through
X Cumbersome weight rescaling

{Zhou et al. NeurIPS 2019 }
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Ramanujan et al. take the top-k weights in each layers

W+ s o W

e top-k element of s are selected

e top-k elements are chosen per layer
top k(I i

e kdepends on the pruning rate

{Ramanujan et al. CVPR 2020 } 12



Ramanujan et al. take the top-k weights in each layers

W+ s o W

e top-k element of s are selected

e top-k elements are chosen per layer
top k(I i

e kdepends on the pruning rate

X Pruning rate has to be known in advance

X Same pruning rate for all layer

X Best pruning rate if found by grid search |52 computationally expensive
X Best pruning rate depends on the network architecture

{Ramanujan et al. CVPR 2020 }
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Our Method



Our method characteristics

e We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
L4 better performances than Straight-Through
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Our method characteristics

e We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
L4 better performances than Straight-Through

e Pruning rate is not needed
.4 No computationally intensive grid search

e Learnt weight rescaling factor
4 Faster inference time and lower overhead

e No weight training
_ Topology selection only
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Each weight as a probability of being selected

Q00O QOO OO0
OO0 OO0 0O
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Our method performs topology selection only

O
O
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O e No weight training or

fine-tuning /1

e Topology selection only
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Our method performs topology selection only
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Our method performs topology selection only

same weights values : no weight training

o

O e No weight training or
fine-tuning /1
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‘3 O X O e Topology selection only
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Topology are selected with a stochastic mask

Layer equation : Zy = gg((mg O ’lUg) X Z£_1>

N

binary masks tensor weights tensor
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Topology are selected with a stochastic mask

Layer equation : Z) = gg((mg O ’ll)g) X Zg_1>

N

binary masks tensor weights tensor

each coefficient follows Bernoulli distribution: 771 ™~ B(psel)

N

Probability for a weight to

Sampling is not differentiable /| be selected
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Probability is reparametrized

Probability reparametrization : pSGl — O-<m)

/ N Learnt variable

Sigmoid ensures 0 < pga) < 1
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Naive Straight Through Gumbel-Softmax is flawed

Probability reparametrization : pSGl — O'(’]’;’L)

Naive Straight Through Gumbel-Softmax

formulation e ATCS ({bg(gl(fg%» D
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Naive Straight Through Gumbel-Softmax is flawed

Probability reparametrization : pSGl — O'(’]TL)

Naive Straight Through Gumbel-Softmax
formulation :

o — QTGS ([ log(a (1)) D

log(1—o(m))

Combination of log and exponential functions :

X Numerical instabilities
X Computationally intensive

19



ASLP is simpler and resolves issues

Probability reparametrization : pS@l — O'(T;’L)

Our formulation Arbitrarily Shifted Log Parameterization (ASLP)

m = TGS ([17])
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ASLP is simpler and resolves issues

Probability reparametrization : pS@l — O'(T;’L)

Our formulation Arbitrarily Shifted Log Parameterization (ASLP)
m = S1TGS ( [ " } )

L4 Numerically stable
L4l Less computationally intensive
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ASLP formulation implies the same parametrization for Pse,

m = TGS ([17])

Our formulation :

Arbitrary unknown constant that shifts log probabilities

1Og(psel) + C

/-

0 _lOg(l _psel) - C

_ Adding a constant does not change the result of STGS

— Psel — O(m)

\

Same reparametrization
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Pruning weights affects the signal propagation dynamic

22



Smart rescale is a simpler and useful weight rescaling

Weights distributions )
e Scaling learnt per layer

Layer 1 &)
17\ 17\ e Mitigates the change of
variance due to pruning
X S§2
Layer 2 —
| S 1L e Improves performances
xS e Reduces number of epochs
“Ager > needed for convergence
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Smart rescale is a simpler and useful weight rescaling

Weights distributions )
e Scaling learnt per layer

Layer 1 &)
17\ 17\ e Mitigates the change of
variance due to pruning
X S§2
Layer 2 —
| S 1L e Improves performances
xS e Reduces number of epochs
“Ager > needed for convergence

.4 Less computationally intensive than Zhou et al. weight rescaling

23



Results



Results : Our method performs better on various cases

Comparison of Supermask, EP and ASLP Comparison of Supermask, EP and ASLP
Conv6 Network — CIFAR 10 Conv2 Network — CIFAR 10
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WR = Weight Rescale, SC = Signed Constant, DA = Data Augmentation
EP (Edge-Popup)’, Supermask?

[1] H. Zhou, et al. "Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019 o5
[2] V. Ramanujan, et al. "What's hidden in a randomly weighted neural network?," in CVPR, 2020
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Comparison of Supermask, EP and ASLP Comparison of Supermask, EP and ASLP
N Conv6 Network — CIFAR 10 ; Conv2 Network — CIFAR 10
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Smart Rescale is faster than DWR' and accelerate convergence

e Smartrescale overhead 0.13s

e DWR' overhead 0.2s

[1] H. Zhou, et al. "Deconstructing lottery tickets: Zeros, signs, and the supermask,” in Neur!PS, 2019
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Smart Rescale is faster than DWR' and accelerate convergence

e Smartrescale overhead 0.13s

.4 SR overhead 35% faster
e DWR' overhead 0.2s

e # Epochs reduction:
o 8.2% (Conv2)
o 19.7% (Conv4)
o 14.0% (Convo)

[1] H. Zhou, et al. "Deconstructing lottery tickets: Zeros, signs, and the supermask,” in Neur!PS, 2019
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Results : On CIFAR100 ASLP performs better on most cases

Conv2 Convd Conv6
EP 40.9 51.1 53.2

ASLP 434 51.7 52.8

Table 1: Edge Popup and ASLP on CIFAR100

Results with Weight Rescale (WR) and Signed Constant (SC)

V. Ramanujan, et al. "What's hidden in a randomly weighted neural network?," in CVPR, 2020
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Sum Up



Sum Up

e Prune untrained networks |54 topology selection only

e Gumbel Softmax | differentiable sampling

e ASLP:
o simpler formulation
o 4 less computationally intensive
o L4 numerically stable

e Smart Rescale :
o |4 improves performances
o reduces number of epochs

e Our method yields lightweight networks ™, without weight training.



A few perspectives

e Test ASLP on other network architectures and datasets
e Reduce training time

e Test ASLP on other context and applications

30



Thank you!

Code available at:
github.com/nO@ciple/aslp
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