
Robin Dupont
Mohammed Amine Alaoui
Hichem Sahbi
Alice Lebois

Extracting Effective
Subnetworks with
Gumbel-Softmax

Sorbonne Université & Netatmo
Netatmo

Sorbonne Université
Netatmo

Embedded devices Need Lightweight Neural Networks

Servers Embedded devices

● Powerful 💪
● Handle full size models 🧠

● Limited resources 🤖
● Require lightweight models 🪶

2

How to design lightweight networks ?

3

Existing network compression methods

● Neural network distillation
● Weight quantization
● Neural Architecture Search
● Pruning

○ Structured
○ Unstructured

4

Existing network compression methods

● Neural network distillation
● Weight quantization
● Neural Architecture Search
● Pruning

○ Structured
○ Unstructured

4

Our method relies on unstructured pruning

Our method is not a typical pruning method

✅ Automatic pruning rate

💡 No weight training

5

Our method is not a typical pruning method

✅ Automatic pruning rate

💡 No weight training

➡ performs topology selection

5

How unstructured weight pruning works ?

6

Unstructured weight pruning yields lightweights networks

7

● weights removed individually

● Flexible ✅

● High sparsity rate ✅

{Le Cun et al. 1990; Hassibi et al. 1993; Han et al. 2015}

Typical pruning pipelines rely on weight training

8

Typical pruning pipelines are composed of 3 steps

9

● 3 steps procedure
train - prune - fine-tune

● Pruning criterion depends
on the method

● Fine-tuning needed

Typical pruning pipelines are composed of 3 steps

9

● 3 steps procedure
train - prune - fine-tune

● Pruning criterion depends
on the method

● Fine-tuning needed

Typical pruning pipelines are composed of 3 steps

9

● 3 steps procedure
train - prune - fine-tune

● Pruning criterion depends
on the method

● Fine-tuning needed

Typical pruning pipelines are composed of 3 steps

9

● 3 steps procedure
train - prune - fine-tune

● Pruning criterion depends
on the method

● Fine-tuning needed

What if we do not train the weights ?

10

Zhou et al. train the Supermask

● mask sampled from Bernoulli
distribution

● optimize only m

{ Zhou et al. NeurIPS 2019 } 11

Zhou et al. train the Supermask

● mask sampled from Bernoulli
distribution

● optimize only m

❌ Basic mask parametrization with Straight Through
❌ Cumbersome weight rescaling

{ Zhou et al. NeurIPS 2019 } 11

Ramanujan et al. take the top-k weights in each layers

{ Ramanujan et al. CVPR 2020 }

● top-k element of s are selected

● top-k elements are chosen per layer

● k depends on the pruning rate

12

Ramanujan et al. take the top-k weights in each layers

❌ Pruning rate has to be known in advance
❌ Same pruning rate for all layer
❌ Best pruning rate if found by grid search ➡ computationally expensive 💰
❌ Best pruning rate depends on the network architecture

{ Ramanujan et al. CVPR 2020 }

● top-k element of s are selected

● top-k elements are chosen per layer

● k depends on the pruning rate

12

Our Method

13

Our method characteristics
● We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
✅ better performances than Straight-Through

14

Our method characteristics
● We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
✅ better performances than Straight-Through

● Pruning rate is not needed
✅ No computationally intensive grid search

14

Our method characteristics
● We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
✅ better performances than Straight-Through

● Pruning rate is not needed
✅ No computationally intensive grid search

● Learnt weight rescaling factor
✅ Faster inference time and lower overhead

14

Our method characteristics
● We use Gumbel-Softmax for differentiable sampling (Jang et al. 2016)
✅ better performances than Straight-Through

● Pruning rate is not needed
✅ No computationally intensive grid search

● Learnt weight rescaling factor
✅ Faster inference time and lower overhead

● No weight training
💡 Topology selection only

14

Each weight as a probability of being selected

15

Our method performs topology selection only

16

● No weight training or
fine-tuning ⚠

● Topology selection only

Our method performs topology selection only

16

● No weight training or
fine-tuning ⚠

● Topology selection only

Our method performs topology selection only

16

● No weight training or
fine-tuning ⚠

● Topology selection only

Our method performs topology selection only

16

● No weight training or
fine-tuning ⚠

● Topology selection only

Topology are selected with a stochastic mask

17

Layer equation :

binary masks tensor weights tensor

Topology are selected with a stochastic mask

17

Layer equation :

binary masks tensor weights tensor

each coefficient follows Bernoulli distribution :

Probability for a weight to
be selected

Topology are selected with a stochastic mask

17

Layer equation :

binary masks tensor weights tensor

each coefficient follows Bernoulli distribution :

Probability for a weight to
be selectedSampling is not differentiable ⚠

Probability is reparametrized

18

Probability reparametrization :

Sigmoid ensures

Learnt variable

Naive Straight Through Gumbel-Softmax is flawed

19

Probability reparametrization :

Naive Straight Through Gumbel-Softmax
formulation :

Naive Straight Through Gumbel-Softmax is flawed

19

Probability reparametrization :

Naive Straight Through Gumbel-Softmax
formulation :

Combination of log and exponential functions :

❌ Numerical instabilities
❌ Computationally intensive

ASLP is simpler and resolves issues

20

Probability reparametrization :

Our formulation Arbitrarily Shifted Log Parameterization (ASLP)

ASLP is simpler and resolves issues

20

Probability reparametrization :

Our formulation Arbitrarily Shifted Log Parameterization (ASLP)

✅ Numerically stable
✅ Less computationally intensive

ASLP formulation implies the same parametrization for Psel

21

Our formulation :

Arbitrary unknown constant that shifts log probabilities

Same reparametrization💡Adding a constant does not change the result of STGS

Pruning weights affects the signal propagation dynamic

22

Smart rescale is a simpler and useful weight rescaling

● Scaling learnt per layer

● Mitigates the change of
variance due to pruning

● Improves performances

● Reduces number of epochs
needed for convergence

23

Smart rescale is a simpler and useful weight rescaling

● Scaling learnt per layer

● Mitigates the change of
variance due to pruning

● Improves performances

● Reduces number of epochs
needed for convergence

23

✅ Less computationally intensive than Zhou et al. weight rescaling

Results

24

Results : Our method performs better on various cases

25

WR = Weight Rescale, SC = Signed Constant, DA = Data Augmentation

[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019
[2] V. Ramanujan, et al. “What’s hidden in a randomly weighted neural network?,” in CVPR, 2020

EP (Edge-Popup)1, Supermask2

Results : Our method performs better on various cases

25

WR = Weight Rescale, SC = Signed Constant, DA = Data Augmentation

[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019
[2] V. Ramanujan, et al. “What’s hidden in a randomly weighted neural network?,” in CVPR, 2020

EP (Edge-Popup)1, Supermask2

Smart Rescale is faster than DWR1 and accelerate convergence

● Smart rescale overhead 0.13s

● DWR1 overhead 0.2s

26[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019

Smart Rescale is faster than DWR1 and accelerate convergence

● Smart rescale overhead 0.13s

● DWR1 overhead 0.2s

26[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019

✅ SR overhead 35% faster

Smart Rescale is faster than DWR1 and accelerate convergence

● Smart rescale overhead 0.13s

● DWR1 overhead 0.2s

26[1] H. Zhou, et al. “Deconstructing lottery tickets: Zeros, signs, and the supermask,” in NeurIPS, 2019

✅ SR overhead 35% faster

● # Epochs reduction :
○ 8.2% (Conv2)
○ 19.7% (Conv4)
○ 14.0% (Conv6)

Results : On CIFAR100 ASLP performs better on most cases

27

Results with Weight Rescale (WR) and Signed Constant (SC)

V. Ramanujan, et al. “What’s hidden in a randomly weighted neural network?,” in CVPR, 2020

Sum Up

28

Sum Up

● Prune untrained networks ➡ topology selection only

● Gumbel Softmax ➡ differentiable sampling

● ASLP :
○ simpler formulation
○ ✅ less computationally intensive
○ ✅ numerically stable

● Smart Rescale :

○ ✅ improves performances
○ ⏱ reduces number of epochs

● Our method yields lightweight networks 🪶, without weight training.

29

A few perspectives
● Test ASLP on other network architectures and datasets

● Reduce training time

● Test ASLP on other context and applications

30

Robin Dupont
Mohammed Amine Alaoui
Hichem Sahbi
Alice Lebois

Thank you! 👍

Sorbonne Université & Netatmo
Netatmo

Sorbonne Université
Netatmo

Code available at:
github.com/n0ciple/aslp

