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Pruning - Overview

Pruning

Group of methods that aim to design lightweight
architectures (small memory footprint or fast inference time)

Introduce sparsity by removing redundant or unecessary
weights of the network

Can by applied at different granularity (fine-grained vs
coarse-grained)
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Pruning - Coarse-grained

......

Pruned Column  
or Row Pruned Channel Pruned Filter

Pruned Subnetwork

Filter:

Network:
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Pruning - Fine-grained

Pruned Weight
Preserved Weight

Pruned Neuron
Impacted Weight

Weight Pruning Neuron Pruning

{Optimal Brain Damage, LeCun et al. 1989; Optimal Brain Surgeon, Hassibi et al. 1992; Learning both weights and connections for efficient neural network, Han et al. 2015} 3/13
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Pruning - Fine-grained

Pruned Weight
Preserved Weight

Pruned Neuron
Impacted Weight

Weight Pruning Neuron Pruning

Our method belongs to the the fine-grained weight pruning category.
{Optimal Brain Damage, LeCun et al. 1989; Optimal Brain Surgeon, Hassibi et al. 1992; Learning both weights and connections for efficient neural network, Han et al. 2015} 3/13
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Pipelines

Pruning Pipelines
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Pruning - Standard Pipeline

Standard Pruning Pipeline

Train Pruning
criterion FinetuneEffective

pruning

Pruning
rate target

Standard pipelines requires the application of a pruning criterion
to determine which weights will be pruned. This is done after
training.

Initial training does not take into account final weight budget.

Effective Pruning: Setting pruned weights to 0 and freezing them
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Pruning - Our Pipeline

Our Pipeline

Train Effective
Pruning

Pruning
rate target

Our pipeline takes the final pruning rate as an input during
initial training.

Topology is optimized with the budget constraint from the
start. This helps preventing disconnections in the network.

Effective Pruning: Setting pruned weights to 0 and freezing them
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Weight Reparametrization

Weight Reparametrization
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Weight Reparametrization

Weight
W

Reparametrization
ht(W) W

Weight Reparametrization

New weights ŵ are defined by ŵ = w � ht(w).
w are the standard neural network weights.
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Reparametrization Function

Reparametrization
Function
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Reparametrization function

+1 to numerically
stabilize  ht(x)

n controls the
sharpness of the falling

and raising edges

t controls the
bandwidth of the pit. 

It is a learnt parameter

C1 and C2 ensure 

0 ≤ ht(x) ≤ 1
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Reparametrization function h
tinit = 100,n = 4

t is a learnt parameter, optimized with SGD. t is initialized
to 100.
n is fixed to 4.
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Reparametrization function
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Budget Loss

Budget Loss
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Budget Loss

Budget: `0-norm is not differentiable. h is used as a surrogate.

Current cost 
(sum of weight reparametrizations)

Target cost

Initial cost

Current cost is computed at each step.
Target cost is the number of parameters that will be kept.
Initial cost is the sum of weight reparametrizations before
the first step.
Total loss is L = Ltask + λLbudget, with λ > 0
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CIFAR 10

Results on CIFAR 10 for Conv4, VGG19 and ResNet18 networks
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{Frankle et al. 2019; Simonyan at al. 2015; He et al. 2016} 10/13
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TinyImageNet

Results on TINYIMAGENET for Conv4 network
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Key points

Our Pipeline

Train Effective
Pruning

Pruning
rate target
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Our reparametrization acts as a regularizer
and a saliency indicator, which induce
sparsity by soft-pruning the smallest weights.

It allows to optimize both topology and
weights under bugdet constraints.

Our method significantly overperforms
magnitude pruning without finetuning, and
performs better than finetuned magnitude
pruning for very high pruning rates on more
complex datasets.
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Budget Loss

Perspectives
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Perspectives

Evaluate our method on larger and more complex
datasets.

Improve performances to outperform finetuned magnitude
pruning more consistently.

Assess the impact of the reparametrization function and
test other functions.
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