

WEIGHT REPARAMETRIZATION FOR BUDGET-AWARE NETWORK PRUNING

ICIP 2021

Robin Dupont - Sorbonne Université & Netatmo Hichem Sahbi - Sorbonne Université Guillaume Michel - Netatmo

2 Our Method

PRUNING AND SPARSITY

Pruning - Overview

Pruning

Group of methods that aim to design lightweight architectures (small memory footprint or fast inference time)

Pruning - Overview

Pruning

 Group of methods that aim to design lightweight architectures (small memory footprint or fast inference time)

Introduce sparsity by removing redundant or unecessary weights of the network

Pruning - Overview

Pruning

- Group of methods that aim to design lightweight architectures (small memory footprint or fast inference time)
- Introduce sparsity by removing redundant or unecessary weights of the network
- Can by applied at different granularity (fine-grained vs coarse-grained)

Pruning - Coarse-grained

Our Method 0000000

Pruning - Fine-grained

Our Method 0000000

Pruning - Fine-grained

Our method belongs to the the fine-grained weight pruning category.

(Optimal Brain Damage, LeCun et al. 1989; Optimal Brain Surgeon, Hassibi et al. 1992; Learning both weights and connections for efficient neural network, Han et al. 2015) 3/13

Pruning Pipelines

Pruning - Standard Pipeline

Standard Pruning Pipeline

Effective Pruning: Setting pruned weights to 0 and freezing them

Pruning - Standard Pipeline

Standard Pruning Pipeline

Standard pipelines requires the application of a **pruning criterion** to determine which weights will be **pruned**. This is done **after training**.

Effective Pruning: Setting pruned weights to 0 and freezing them

Pruning - Standard Pipeline

Standard Pruning Pipeline

Standard pipelines requires the application of a **pruning criterion** to determine which weights will be **pruned**. This is done **after training**.

Initial training does not take into account final weight budget.

Effective Pruning: Setting pruned weights to 0 and freezing them

Pruning - Our Pipeline

Our Pipeline

Effective Pruning: Setting pruned weights to 0 and freezing them

Pruning - Our Pipeline

Our pipeline takes the **final pruning rate** as an input **during initial training**.

Effective Pruning: Setting pruned weights to 0 and freezing them

Pruning - Our Pipeline

Our pipeline takes the **final pruning rate** as an input **during initial training**.

Topology is optimized with the budget constraint **from the start.** This helps **preventing disconnections** in the network.

Effective Pruning: Setting pruned weights to 0 and freezing them

Our Method

Weight Reparametrization

Weight Reparametrization

Weight Reparametrization

• New weights \hat{w} are defined by $\hat{w} = w \odot h_t(w)$.

Weight Reparametrization

- New weights \hat{w} are defined by $\hat{w} = w \odot h_t(w)$.
- w are the standard neural network weights.

Reparametrization Function

■ *t* is a **learnt parameter**, optimized with SGD. *t* is initialized to 100.

■ *t* is a **learnt parameter**, optimized with SGD. *t* is initialized to 100.

n is fixed to 4.

Budget: ℓ_0 -norm is not differentiable. *h* is used as a surrogate.

Budget: ℓ_0 -norm is not differentiable. *h* is used as a surrogate.

Budget: ℓ_0 -norm is not differentiable. *h* is used as a surrogate.

Current cost is computed at each step.

Budget: ℓ_0 -norm is not differentiable. *h* is used as a surrogate.

- Current cost is computed at each step.
- Target cost is the number of parameters that will be kept.

Budget: ℓ_0 -norm is not differentiable. *h* is used as a surrogate.

- Current cost is computed at each step.
- Target cost is the number of parameters that will be kept.
- Initial cost is the sum of weight reparametrizations before the first step.

Budget: ℓ_0 -norm is not differentiable. *h* is used as a surrogate.

- Current cost is computed at each step.
- Target cost is the number of parameters that will be kept.
- Initial cost is the sum of weight reparametrizations before the first step.

■ Total loss is $\mathcal{L} = \mathcal{L}_{task} + \lambda \mathcal{L}_{budget}$, with $\lambda > 0$

RESULTS

CIFAR 10

Results on CIFAR 10 for Conv4, VGG19 and ResNet18 networks

MP: Magnitude Pruning, MP+FT: Finetuned Magnitude Pruning

Results on CIFAR 10 for Conv4, VGG19 and ResNet18 networks

MP: Magnitude Pruning, MP+FT: Finetuned Magnitude Pruning

Our method does not need finetuning.

{Frankle et al. 2019; Simonyan at al. 2015; He et al. 2016}

Our Method ooooooc

Results 0000

Results on TINYIMAGENET for **Conv4** network

MP: Magnitude Pruning, MP+FT: Finetuned Magnitude Pruning

Our Method ooooooc

Results 0000

TinyImageNet

Results on TINYIMAGENET for **Conv4** network

MP: Magnitude Pruning, MP+FT: Finetuned Magnitude Pruning Our method **does not need finetuning**.

SUM UP

 Our reparametrization acts as a regularizer and a saliency indicator, which induce sparsity by soft-pruning the smallest weights.

12/13

 Our reparametrization acts as a regularizer and a saliency indicator, which induce sparsity by soft-pruning the smallest weights.

It allows to optimize both topology and weights under bugdet constraints.

 Our reparametrization acts as a regularizer and a saliency indicator, which induce sparsity by soft-pruning the smallest weights.

It allows to optimize both topology and weights under bugdet constraints.

Our method significantly overperforms magnitude pruning without finetuning, and performs better than finetuned magnitude pruning for very high pruning rates on more complex datasets.

Perspectives

Evaluate our method on larger and more complex datasets.

Evaluate our method on larger and more complex datasets.

Improve performances to outperform **finetuned** magnitude pruning more consistently.

Evaluate our method on larger and more complex datasets.

Improve performances to outperform **finetuned** magnitude pruning more consistently.

Assess the **impact of the reparametrization** function and test other functions.

Thank you! 👍

Robin DUPONT

Sorbonne Université & Netatmo **Hichem SAHBI** Sorbonne Université Guillaume MICHEL Netatmo

🖂 robin.dupont@netatmo.com