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Summary : We propose a new weight reparametrization to allow optimization of both topology and weights at the same time, for pruning under budget constraint.

RESULTS

MOTIVATION AND CONTRIBUTION

STANDARD PRUNING PIPELINES

« Standard pruning techniques [1] require a fine-tuning step, after
effective pruning, in order to compensate for the loss of accuracy.

* This step could be cumbersome and the resulting pruned network
may be topologically inconsistent.
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OUR PRUNING PIPELINE

* Qur proposed method, in this paper, is end-to-end and does not
require any fine-tuning after the effective pruning. The pruning
criterion is embedded in the reparametrization.

* Qur reparametrization also allows controlling the budget through a
custom loss, thus optimizing both the topology and the weights for a
given targeted budget.

* Besides, it prevents disconnections in the network topology.
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OUR METHOD

WEIGHT REPARAMETRIZATION

Weight Reparametrization . /W\
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Reparametrized weights are called apparent weights denoted w.
They are defined by w = w ® h (w).

REPARAMETRIZATION FUNCTION

The reparametrization function h acts as a regularizer that
soft-prune the smallest weights. The soft pruning is later enforced
through the effective pruning step.
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BUDGET LOSS

The budget loss drives sparsity. It is normalized by C.__ for better
conditionning. The budget loss is combined with the classification
loss with a mixing coefficient A\>0 that controls its relative
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Results are shown for Conv42 VGG195! and ResNet18“ networks
on CIFAR10 and TinylmageNet (only Conv4). Three methods are

compared: Ours (which does not require fine tuning), Magnitude
pruning (MP) and finetuned MP (MP+FT).
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RESULTS

» Our reparametrization acts as a regularizer and a saliency indicator,
which induce sparsity by soft-pruning the smallest weights.

* |t allows to optimize both topology and weights under bugdet
constraints.

* Our method significantly overperforms magnitude pruning without
finetuning, and performs better than finetuned magnitude pruning
for very high pruning rates on more complex datasets

PERSPECTIVES

* Test on larger and more complex datasets.
* Improve performances to consistently outperform MP+FT.
* Try other reparametrization functions.
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