
THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité - Informatique
Informatique, Télécommunication et Électronique (Paris) - ED130

Deep Neural Network Compression
for Visual Recognition

Compression de Réseaux de Neurones Profonds
pour la Reconnaissance Visuelle

Présentée par
Robin Dupont

Pour obtenir le grade de
DOCTEUR de SORBONNE UNIVERSITÉ

Soutenue publiquement le 8 décembre 2023

Devant un jury composé de :

Mme Jenny Benois-Pineau
Professeure, Université de Bordeaux

Rapportrice

M. Titus Bogdan Zaharia
Professeur, Télécom SudParis

Rapporteur

M. Pierre Beauseroy
Professeur, Université de Technologie de Troyes

Examinateur

M. Nicolas Gac
Professeur, Université Paris-Saclay

Examinateur

M. Vincent Gripon
Professeur, IMT Atlantique

Examinateur

Mme Alice Lebois
Ingénieure, Netatmo

Co-encadrante de thèse

M. Hichem Sahbi
Chercheur CNRS (HDR), Sorbonne Université

Directeur de thèse

ii

Abstract

Thanks to the miniaturisation of electronics, embedded devices have be-
come more and more ubiquitous, since the 2010s, realising various tasks
all around us. As their usage is developing, there is a growing demand for
these devices to process data and make complex decisions efficiently. Deep
neural networks are powerful tools to achieve this goal, however, these net-
works are often too heavy and complex to fit on embedded devices. Thus,
there is a compelling need to devise methods to compress these large net-
works without significantly compromising their efficacy. This PhD thesis
introduces two innovative methods, centred around the concept of prun-
ing, aiming to compress neural networks while ensuring minimal impact
on their accuracy.

This PhD thesis first introduces a budget-aware method for compress-
ing large neural networks with weight reparametrisation and budget loss
that does not require fine-tuning. Traditional pruning methods often rely
on post-training saliency indicators to remove weights, disregarding the
targeted pruning rate. Our approach integrates a budget loss, driving the
pruning process towards a specific value during training, thereby achieving
a joint optimisation of topology and weights. By soft-pruning the smallest
weights using weight reparametrisation, our method significantly mitigates
accuracy degradation in comparison to traditional pruning techniques. We
show the effectiveness of our approach across various datasets and archi-
tectures.

This PhD thesis later focuses on the extraction of effective subnet-
works without weight training. Our goal is to identify the best subnetwork
topology in a large network without optimising its weights while still deliv-
ering compelling performance. This is achieved using our novel Arbitrarily
Shifted Log Parametrisation, which serves as a differentiable relaxation of
discrete topology sampling, enabling the training of masks that represent
the probability of selection of the weights. Alongside, a weight rescaling
mechanism (referred to as Smart Rescale) is also introduced, which allows

iii

enhancing the performance of the extracted subnetworks as well as speeding
up their training. Our proposed approach also finds the optimal pruning
rate after one training pass, thereby circumventing computationally ex-
pensive gird-search and training across various pruning rates. As shown
through comprehensive experiments, our method consistently outperforms
closely related state-of-the-art techniques and allows designing lightweight
networks which can reach high sparsity levels without significant loss in
accuracy.

iv

Résumé

Grâce à la miniaturisation de l’électronique, les dispositifs embarqués sont
devenus de plus en plus omniprésents depuis les années 2010, réalisant
diverses tâches tout autour de nous. À mesure que leur utilisation se dé-
veloppe, la demande pour des dispositifs traitant les données et prennant
des décisions complexes de manière efficace augmente. Les réseaux de neu-
rones profonds sont des outils puissants pour atteindre cet objectif, cepen-
dant, ces réseaux sont souvent trop lourds et complexes pour être intégrés
dans des appareils embarqués. C’est pourquoi il est impératif de conce-
voir des méthodes pour compresser ces grands réseaux de neurones sans
compromettre significativement leur performance. Cette thèse de doctorat
introduit deux méthodes innovantes, centrées autour du concept d’élagage,
visant à compresser les réseaux de neurones tout en assurant un impact
minimal sur leur précision.

Cette thèse de doctorat introduit d’abord une méthode prenant en
compte le budget pour compresser de grands réseaux de neurones à l’aide
de reparamétrisation des poids et d’une fonction de coût budgétaire, le tout
ne nécessitant pas de fine-tuning. Les méthodes d’élagage traditionnelles
s’appuient souvent sur des indicateurs de saillance post-entraînement pour
supprimer les poids, négligeant le taux d’élagage ciblé. Notre approche
intègre une fonction de coût budgétaire, guidant le processus d’élagage
vers une valeur spécifique de parcimonie pendant l’entraînement, réalisant
ainsi une optimisation conjointe de la topologie et des poids. En simu-
lant l’élaguage des poids les plus petits en cours d’entraînement grâce à
la reparamétrisation des poids, notre méthode atténue significativement la
perte de la précision par rapport aux techniques d’élagage traditionnelles.
Nous démontrons l’efficacité de notre approche à travers divers ensembles
de données et architectures.

Cette thèse de doctorat se concentre ensuite sur l’extraction de sous-
réseaux efficaces, sans entraînement des poids. Notre objectif est d’identifier
la meilleure topologie d’un sous-réseau dans un grand réseau sans en opti-

v

miser les poids tout en offrant des performances convaincantes. Ceci est réa-
lisé grâce à notre méthode appelée Arbitrarily Shifted Log-Parametrisation,
qui sert à échantillonner des topologies discrètes de manière différentiable,
permettant l’entraînement de masques représentant la probabilité de sé-
lection des poids. Parallèlement, un mécanisme de recalibrage des poids
(appelé Smart Rescale) est également introduit, permettant d’améliorer
les performances des sous-réseaux extraits ainsi que d’accélérer leur en-
traînement. Notre approche proposée trouve également le taux d’élagage
optimal après un unique entraînement, évitant ainsi la recherche exhaustive
d’hyperparamètres et un entraînement pour chaque taux d’élagage. Nous
montrons à travers un ensemble expériences que notre méthode surpasse
constamment les techniques de l’état de l’art étroitement liées et permet
de concevoir des réseaux légers pouvant atteindre des niveaux élevés de
parcimonie sans perte significative de précision.

vi

Contents

Abstract iv

Résumé vi

List of Figures xx

List of Tables xxiv

List of Acronyms xxvi

Remerciements xxviii

1 Introduction 1
1.1 Context . 3
1.2 Industrial Context . 6
1.3 Why Deep learning ? . 6
1.4 Challenges . 7
1.5 Contributions . 9
1.6 Outline . 11

2 Deep Learning Overview 13
2.1 Introduction . 15
2.2 Early Architectures . 17

2.2.1 Perceptron . 17
2.2.2 Multilayer Perceptron 18

2.3 Neural Network Training 19
2.3.1 Functional Definition 20
2.3.2 Loss Function and Regularisation 20
2.3.3 Loss Optimisation 23

2.4 Convolutional Neural Networks for Computer Vision . . . 26
2.4.1 Building Blocks . 26

vii

CONTENTS

2.4.2 Architectures Evolution 31
2.4.3 Architectures Used in Experiments 34

2.5 Datasets . 36
2.5.1 CIFAR-10 . 39
2.5.2 CIFAR-100 . 39
2.5.3 TinyImageNet . 40
2.5.4 Train, Validation and Test Sets 41

3 Deep Neural Network Compression 43
3.1 Introduction . 45
3.2 Accelerating Computation in Neural Networks 47

3.2.1 Fast Fourier Transform 47
3.2.2 Optimised Matrix Multiplication Algorithms 48
3.2.3 Leveraging Matrix Structures 49
3.2.4 Practical Applications and Limitations 51

3.3 Teaching Paradigm . 51
3.3.1 Knowledge Distillation 51
3.3.2 Feature-Map Matching 52
3.3.3 Deep Mutual Learning 53
3.3.4 Teacher Assistant 53
3.3.5 Alternative Distillation Losses 54

3.4 Architecture Design . 55
3.4.1 Building Blocks for Efficient Architecture Design . 56
3.4.2 Automatic Architecture Design Through Neural Ar-

chitecture Search 61
3.5 Compressing and Optimising an Existing Architecture . . . 65

3.5.1 Lower Precision Weights and Activations Represen-
tation . 66

3.5.2 Removing Weights and Connections 68
3.6 Positioning . 76
3.7 Conclusion . 77

4 Weight Reparametrization for Budget-Aware Network Prun-
ing 79
4.1 Introduction and Related Work 82

4.1.1 Unstructured Magnitude Pruning. 83
4.1.2 Weight Reparametrisation 85
4.1.3 Pruning with Budget 86
4.1.4 Pruning without fine-tuning 87

viii

CONTENTS

4.1.5 Contributions . 90
4.2 Pruning with Weight Reparametrisation and Budget Loss . 91

4.2.1 Weight Reparametrisation 93
4.2.2 Budget Loss . 97

4.3 Method and Algorithm Overview 99
4.4 Experiments . 101

4.4.1 Experimental Setup 101
4.4.2 Performances . 102
4.4.3 Optimal Value of λ 103
4.4.4 Validation of the Budget Loss 109
4.4.5 Validation of the Reparametrisation 110
4.4.6 Tuned Initialisation 114

4.5 Conclusion . 117

5 Effective Subnetworks Extraction without Weight Training123
5.1 Introduction and Related Work 127

5.1.1 Pruning at initialisation 128
5.1.2 Lottery Tickets . 131
5.1.3 Existence of effective subnetworks 133
5.1.4 Subnetwork topology extraction 133

5.2 Contributions . 135
5.3 Extracting Effective Subnetworks with

Gumbel-Softmax . 136
5.3.1 Stochastic Weight Sampling 136
5.3.2 Smart Weight Rescaling 143
5.3.3 Freezing the Topology via Thresholding 145

5.4 Method Overview and Algorithm 146
5.5 Experiments . 148

5.5.1 Experimental Setup 148
5.5.2 Performances . 150
5.5.3 Validation of the Weight Rescaling Mechanism . . . 156
5.5.4 Effect of the Learning Rate on Training Performances 157
5.5.5 Post Training Pruning Rate Adjustment 159

5.6 Conclusion . 160

6 Conclusion and Perspectives 163
6.1 Summary of contributions 165
6.2 Perspectives . 167

ix

CONTENTS

A Appendix 171
A.1 Relationship between Multiply-Accumulate Operations and

the Number of Parameters 171
A.2 Scheduling of the Mixing Coefficient λ 172
A.3 Xavier and Kaiming Initialisations 172

Bibliography 175

x

List of Figures

1.1 Models top-5 accuracy on ImageNet [25] compared to human
performance. 7

2.1 Conceptual scheme of the perceptron. Each input xi is mul-
tiplied by its associated weight wi and summed to the other
weighted inputs. The bias b is added to the sum and the
result is passed through an activation function g to produce
the output ŷ. 18

2.2 Conceptual scheme of a Multilayer Perceptron (MLP) with
one hidden layer. Each circle represents a neuron and each
line a connection associated with a weight. 19

2.3 Illustration of the effect of the learning rate on the conver-
gence of the gradient descent. The gradient descent has been
applied iteratively for 20 epochs. On the one hand, a too-
high learning rate (η = 1.01) causes the gradient descent to
overshoot the minimum of the loss function. On the other
hand, a too-low learning rate (η = 0.01) causes the gradient
descent to converge slowly. 25

2.4 Conceptual representation of a Convolutional and a Fully
Connected layer. The Convolutional layer (figure 2.4a) takes
a multi-channel input and produces a multi-channel output.
Each coefficient of the output is computed by applying a
convolution operation at a corresponding location in the in-
put. The Fully Connected layer (figure 2.4b) takes a vector
input and produces a vector output. Each connection is
represented by a weight in the weight matrix. 28

2.5 Rectified Linear Unit (ReLU), tanh and sigmoid activation
functions. Best viewed in colours. 29

xi

LIST OF FIGURES

2.6 Architecture of LeNet-5, a Convolutional Neural Network
used for handwritten digit recognition. Image taken from
[106] . 32

2.7 Architecture of the VGG16 network introduced in [175]. Im-
age taken from [39] . 33

2.8 A residual block and its skip connection used in ResNets[67].
The identity skip connection allows for the gradient to be
backpropagated directly through several layers, thus miti-
gating the vanishing gradient problem. 33

2.9 Networks size comparison. The x-axis represents the number
of Floating Point Operations (FLOPs) required to process a
single image. The y-axis represents the Top-1 accuracy on
the ImageNet [25] dataset and the size of the circles repre-
sents the number of parameters in the network. Numbers
are taken from [154] . 34

2.10 VGG16 adapted for CIFAR-10 and CIFAR-100. 35
2.11 ResNet20 and ResNet18 architectures. ResNet20 (figure 2.11a)

is tailored for CIFAR-10 and comprises 3 stages encompass-
ing 3 Basic Blocks of 2 Convolutional (Conv) layers each,
with an identity skip connection in each block. ResNet18
(figure 2.11b) is tailored for ImageNet and is composed of 4
stages encompassing 4 Basic Blocks of 2 convolutional layers
each. There are two types of blocks: BI with an identity skip
connection and BP with a projection skip connection. The
projection skip connection is used to match the dimensions
between the input and the output of the block. 37

2.12 Conv2, Conv4 and Conv6 architectures. The number of flat
features F corresponds to the size of the feature map of the
last block B, once vectorised. F = 16384, 8192 and 4096
for Conv2, Conv4 and Conv6, respectively for input images
of size 32× 32. 38

2.13 A sample of images from CIFAR-10. Each row contains
images from one of the 10 classes: plane, car, bird, cat,
deer, dog, frog, horse, ship, and truck 39

2.14 A sample of images from CIFAR-100. Each image represents
an instance of one of the 100 distinct classes. 40

2.15 A sample of images from the Tiny ImageNet dataset. Each
image represents an instance of one of the 200 distinct classes. 41

xii

LIST OF FIGURES

3.1 Overview of various knowledge distillation frameworks. From
top to bottom, left to right: Deep Mutual Learning [212],
FitNet [165], Attention Transfer [209], Teacher Assistant
[137] and Knowledge Distillation [74]. 53

3.2 Conceptual scheme of [2]. The student network efficiently
learns the main task while retaining high mutual informa-
tion with the teacher network. The mutual information is
maximised by learning to estimate the distribution of the
activations in the teacher network, provoking the transfer of
knowledge. Adapted from the original scheme found in [2]. 54

3.3 Conceptual scheme of the Probabilistic Knowledge Transfer
method. Both the student and the teacher feature maps are
modelled using probability distributions. The divergence of
the latter is minimised in order to transfer knowledge from
the teacher to the student. Illustration taken from [146]. . 55

3.4 Illustration schemes of the standard and depthwise separable
convolution. The standard convolution uses Cout kernels of
size k × k × Cin. The depthwise separable convolution is
split into two steps: (i) a convolution with Cin kernels of
size k × k and (ii) a convolution with Cout kernels of size
1× 1× Cin. Best viewed in colours. 57

3.5 Illustration scheme of the fire module. The fire module is
composed of a squeeze layer (pointwise convolution designed
to reduce the number of channels fed to the following layer)
and an expand layer (convolution with mixed 1×1 and 3×3
kernels. The 1× 1 kernels replace some of the 3× 3 kernels,
being less computationally intensive.). Best viewed in colours. 58

3.6 Illustration scheme of grouped convolution with channel shuf-
fling. Each filter only acts on a subset of the input tensor
(here represented by a matching colour). The channels of the
yielded tensor are shuffled to ensure the subsequent groups
can access information from all the previous groups. Best
viewed in colours. 59

3.7 Illustration scheme of the path taken by the feature maps
after the channel split block. Adapted from the original
scheme found in [131]. 59

xiii

LIST OF FIGURES

3.8 Illustration scheme of the residual block and the inverted
residual block. Note that on the inverted residual block, the
feature maps with the lower number of channels are the ones
connected via the skip connection, whereas it is the opposite
on the standard residual block. Diagonally hatched layers
do not use non-linearities. The grey colour indicates the
beginning of the next block. Both illustrations are taken
from [29]. Best viewed in colours. 60

3.9 Illustration scheme of the Squeeze-and-Excitation module.
The original feature map is squeezed into a channel descrip-
tor through global average pooling. This descriptor is then
used to learn the interdependencies between the channels
through two fully connected layers. The output is then mul-
tiplied layerwise with the original feature map (excitation).
Best viewed in colours. 61

3.10 Figure 2.9 updated with the size and performance of the
efficient architectures detailed in section 3.4.1. Best viewed
in colours. 62

3.11 ImageNet top-1 accuracy vs model size (in millions of pa-
rameters). The EfficientNet family of models significantly
outperforms other models of similar size, obtained either by
Neural Architecture Search (NAS) or manual design. This
graph is taken from [184]. 64

3.12 Figure 3.10 updated with the size and performance of archi-
tectures detailed in section 3.4.2. Best viewed in colours. . 65

3.13 Example of binarised kernels and activations in a convolu-
tional layer. The kernels are taken from the first layer of a
Convolutional Neural Network (CNN) trained on CIFAR-10.
Image taken from [87]. 67

3.14 Fake quantisation nodes (fake quant.) are included in the
computation graph of figure 3.14b, whereas figure 3.14a rep-
resent the computaion graph used during inference. During
the inference, weights are stored in uint8 format, whereas
the bias are not, because their computational overhead is
negligible.[91]. Both illustrations are adapted from [91]. . . 69

3.15 Conceptual illustrations of structured and unstructured prun-
ing. 70

xiv

LIST OF FIGURES

3.16 Illustration Scheme of ThiNet. The dotter filters and cor-
responding channels are the ones to be pruned. Once they
are removed, the pruned network is fine-tuned. Image taken
from [130] . 71

3.17 Comparison of the method described in [96] (right) and stan-
dard channel pruning (left). The differentiable mask allows
for a soft pruning that can be reverted during the training.
Image taken from [96] . 72

4.1 Comparison of our method and magnitude pruning. Magni-
tude pruning does not include any prior on weights during
the initial training phase and needs an additional fine-tuning
procedure. Our method embeds a saliency measure based
on the weight magnitude in the reparametrisation and does
not require fine-tuning. Best viewed in colour. 92

4.2 Reparametrisation function ht with varying temperature pa-
rameter t and power n. t controls the width of the pit, and
n controls the steepness of the slope. 95

4.3 The unstable reparametrisation function h̃t and its stable
alternative ht, with t = 1 and n = 4 for both functions. . . 97

4.4 Log-scale plot of number of parameters and normalisation
factor per layer for a VGG16 network. The significant dif-
ferences in terms of the number of parameters yields dra-
matically different normalisation factors. Some of them are
4 orders of magnitude apart, and all of them are vanishingly
small compared to a common main task loss value. 99

4.5 Principle scheme of our pruning pipeline and the standard
pruning pipeline. With our pruning pipeline, the targeted
pruning rate that will be enforced during the effective prun-
ing step, is taken into account from the beginning. Thus,
our method does not need a fine-tuning step. In contrary,
the standard pruning pipeline applies the pruning criterion
and the effective pruning after the initial training. This re-
sults in a drop in performance that needs to be compensated
for with fine-tuning. 101

xv

LIST OF FIGURES

4.6 Performances comparison of our method (Ours) against mag-
nitude pruning without (MP w/o FT) and with fine-tuning
(MP w/ FT) with a Conv4 network on CIFAR-10 and CIFAR-
100 datasets, for different pruning rates. Figure 4.6a and
figure 4.6b show the testing accuracy of the model and fig-
ure 4.6c and figure 4.6d the number of epochs needed to
obtain the best model. Best viewed in colours. 104

4.7 Performances comparison of our method (Ours) against mag-
nitude pruning with fine-tuning (MP+FT) with a VGG16
network on CIFAR-10 and CIFAR-100 datasets, for different
pruning rates. Figure 4.7a and figure 4.7b show the testing
accuracy of the model and figure 4.7c and figure 4.7d the
number of epochs needed to obtain the best model. Best
viewed in colours. 105

4.8 Performances comparison of our method (Ours) against mag-
nitude pruning with fine-tuning (MP+FT) with a ResNet20
network on CIFAR-10 and CIFAR-100 datasets, for different
pruning rates. Figure 4.8a and figure 4.8b show the testing
accuracy of the model and figure 4.8c and figure 4.8d the
number of epochs needed to obtain the best model. Best
viewed in colours. 106

4.9 Performances comparison of our method (Ours) against mag-
nitude pruning with fine-tuning (MP+FT) with a ResNet18
network on TinyImageNet dataset, for different pruning rates.106

4.10 Impact of the parameter λ on the achieved final budget for
a Conv4 network on CIFAR-10 dataset, for various pruning
rates. A too-small value of λ does not make the actual bud-
get match the desired budget. The actual budget is either
too small (figure 4.10a) or too high (figure 4.10c) compared
to the target, depending on the applied pruning rate. . . . 108

xvi

LIST OF FIGURES

4.11 Comparison of our method and its variant without the bud-
get loss. The experimental results are referred to as ℓ1 reg.,
wherein the budget loss is replaced by a ℓ1 regularisation
loss on the network weights. The mixing coefficient λ is
varied from 0.1 to 100, depending on the experiment. w/o
budget corresponds to the absence of the budget loss (this
is equivalent to λ = 0). On the other hand, w/ budget cor-
responds to our method, with the same setup as described
in section 4.4.2. Results are presented for a Conv4 net-
work, trained on CIFAR-10 (figure 4.11a) and CIFAR-100
(figure 4.11b). Best viewed in colours. 111

4.12 Comparison of our method and its variant without the bud-
get loss. The experimental results are referred to as ℓ1 reg.,
wherein the budget loss is replaced by a ℓ1 regularisation
loss on the network weights. The mixing coefficient λ is
varied from 0.1 to 100, depending on the experiment. w/o
budget corresponds to the absence of the budget loss (this
is equivalent to λ = 0). On the other hand, w/ budget cor-
responds to our method, with the same setup as described
in section 4.4.2. Results are presented for a ResNet20 net-
work, trained on CIFAR-10 (figure 4.12a) and CIFAR-100
(figure 4.12b). Best viewed in colours. 111

4.13 Comparison of our method and its variant without the bud-
get loss. The experimental results are referred to as ℓ1 reg.,
wherein the budget loss is replaced by a ℓ1 regularisation
loss on the network weights. The mixing coefficient λ is
varied from 0.1 to 100, depending on the experiment. w/o
budget corresponds to the absence of the budget loss (this
is equivalent to λ = 0). On the other hand, w/ budget cor-
responds to our method, with the same setup as described
in section 4.4.2. Results are presented for a VGG16 net-
work, trained on CIFAR-10 (figure 4.13a) and CIFAR-100
(figure 4.13b). Best viewed in colours. 112

4.14 Comparison of our method and its variant without the re-
parametrization on Conv4, evaluated on CIFAR-10 and CIFAR-
100. Our method (budget + reparam) has similar perfor-
mance to the budget only variant before pruning, whereas
our method, is already pruned. Once pruned, the budget
only variant is significantly impaired. 114

xvii

LIST OF FIGURES

4.15 Comparison of our method and its variant without the re-
parametrization on ResNet20, evaluated on CIFAR-10 and
CIFAR-100. Due to the small size of the network (see ta-
ble 2.1), the pruned version of our method (budget + reparam)
and the budget only variant cannot keep up with the un-
pruned version. Nevertheless, if considering the pruned ver-
sions, our method scores better, thanks to the addition of
the reparametrization. 115

4.16 Comparison of our method and its variant without the reparametriza-
tionn VGG16, evaluated on CIFAR-10 and CIFAR-100. Our
method (budget + reparam) has similar performance to the
budget only variant before pruning, whereas our method, is
already pruned. Once pruned, the budget only variant is
significantly impaired. 115

4.17 Fine-tuning of a Conv4 network pruned by magnitude prun-
ing (MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets
for various pruning rates. Conventional (MP w/ FT) fine-
tuning is compared to fine-tuning with our method (pruned+FT
(w/ our method)). Our method, described in section 4.3, is
shown for comparison purposes (Ours). On this network,
our method performs better than other approaches. Fine-
tuning the network with our method provides better results
than fine-tuning it with a conventional method. 117

4.18 Fine-tuning of a ResNet20 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets with various pruning rates. Conventional (MP w/
FT) fine-tuning is compared to fine-tuning with our method
(pruned+FT (w/ our method)). Our method, described in
section 4.3, is shown for comparison purposes (Ours). On
this network, fine-tuning with our method considerably out-
performs other approaches. 118

xviii

LIST OF FIGURES

4.19 Fine-tuning of a ResNet20 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets with various pruning rates. Conventional (MP w/
FT) fine-tuning is compared to fine-tuning with our method
(pruned+FT (w/ our method)). Our method, described in
section 4.3, is shown for comparison purposes (Ours). On
this network, fine-tuning with our method performs on par
with other methods up to 95% of pruning. For higher prun-
ing rates, it outperforms other approaches. 118

4.20 Comparison of fine-tuning a network whose initialisation has
been trained from scratch (denoted unpruned initialisation)
or trained from scratch and pruned with magnitude prun-
ing (denoted pruned initialisation). Fine-tuning a pruned
initialisation always outperforms fine-tuning an unpruned
initialisation in the tested configurations. 119

5.1 Comparison of a standard train-prune-finetune pipeline and
the prune at initialisation pipeline. In the latter, the net-
work is pruned before training. 128

5.2 Synflow accuracy compared to SNIP and GraSP for different
pruning rates. Methods are benchmarked on VGG16 trained
on CIFAR-100. Illustration taken from [186] 130

5.3 Conceptual illustration of the different processes to obtain
a Lottery Ticket: reinitialising the weights to their original
values with one-shot magnitude pruning (LT with original
values), reinitialising the weights to their early stage val-
ues with one-shot magnitude pruning (LT with early stage
values) and iterative magnitude pruning (LT with iterative
magnitude pruning). Best viewed in colour. 132

5.4 Overview of our pruning pipeline and standard pruning pipelines.
Our pipeline performs topology selection only: weights are
not trained. On the contrary, standard pruning pipelines
rely on weight training and fine-tuning. 147

5.5 Data Augmentation pipeline example used for CIFAR-10
and CIFAR-100. 149

5.6 Impact of Smart Rescale (SR) on the number of epochs re-
quired to reach convergence for Conv{2,4,6} on CIFAR-10
and CIFAR-100. 157

xix

LIST OF FIGURES

5.7 Evolution of the test accuracy for Conv4, VGG16 and ResNet-
20 trained with Arbitrarily Shifted Log Parametrisation (ASLP)
(with data augmentation, Weight Rescaling (WR) and Signed
Constant (SC)) on CIFAR-10 for various learning rates. A
learning rate of 50 yields the optimal balance between per-
formance and training speed. 159

5.8 Comparative analysis of Arbitrarily Shifted Log Parametri-
sation (ASLP) performance for CIFAR-10 and CIFAR-100
datasets using various network architectures (Conv{2,4,6},
ResNet-20, and VGG16) at different pruning rates. Arbi-
trarily Shifted Log Parametrisation (ASLP) performances
are evaluated with Weight Rescaling (WR), Signed Constant
(SC) and data augmentation. Results demonstrate that
Conv{2,4,6} networks maintain strong performance even at
higher pruning rates and indicate that the pruning rate
achieved by thresholding is equivalent to the pruning rate
yielding the best test accuracy when sweeping through the
possible pruning rates. 161

A.1 Evolution of the mixing coefficient λ for different values of
p and for increasing and decreasing scheduling. Best viewed
in color. 174

xx

List of Tables

2.1 Number of parameters for the used neural network architec-
tures. The number of parameters is given for the CIFAR-10
dataset, except for the ResNet18 architecture, whose num-
ber of parameters is given for the TinyImageNet dataset. . 35

2.2 The number of images, of classes, image size and size of the
test set for the three datasets used: CIFAR-10, CIFAR-100
and TinyImageNet. 38

4.1 Impact of the parameter λ on the achieved budget and the
post-pruning test accuracy of the model for a Conv4 net-
work on the CIFAR-10 dataset for various pruning rates.
Although a high value of λ ensures the targeted budget is
reached, it also leads to a lower test accuracy when the prun-
ing rate increases. 107

4.2 Achieved budget for the budget only variant. Results are
presented for λ = 5. Across all experiments, the achieved
budget matches closely the targeted budget, which is com-
puted as (1−pruning rate)×100 and is expressed in percent. 113

xxi

LIST OF TABLES

5.1 Comparison of the number of explored topologies for the
Conv4 and ResNet-18 networks with CIFAR-10 and Tiny-
ImageNet, respectively. Since a new topology is sampled
for every batch, the number of explored topologies (E) is
computed as the product of the number of batches and the
number of epochs during which the network is trained (here
103). The number of possible topologies (P) is computed
as the number of possible weight combinations in the net-
work (2N). The fraction of explored topologies is computed
as the ratio of the fraction of explored topologies for the
Conv4 network and the fraction of explored topologies for
the ResNet-18 network. In these experimental setups, the
fraction of explored topologies for the Conv4 network is sig-
nificantly higher than the fraction of explored topologies for
the ResNet-18 network. 152

5.2 Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)
test accuracy against Edge-Popup and Supermask [157,
215] on CIFAR-10 using various configurations. We reim-
plemented the configurations tested by the authors in their
articles. Performances are presented with (table 5.2a) and
without (table 5.2b) data augmentation, Weight Rescaling
(WR), and Signed Constant (SC) weight distribution. A
dash denotes a configuration that was not tested by the au-
thors. Our method performances are reported for both the
thresholding and averaging setups detailed in section 5.3.3.
For Edge-popup, we use the value of k which yeilds the best
test accuracy for Conv{2,4,6}, as reported in [157]. Across
all setups, our method ASLP outperforms Edge-Popup and
Supermask. 153

xxii

LIST OF TABLES

5.3 Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)
test accuracy against Edge-Popup and Supermask [157,
215] on CIFAR-100 using various configurations. We use
the configurations tested by the authors in their articles.
Performances are presented with (table 5.2a) and without
(table 5.2b) data augmentation, Weight Rescaling (WR),
and Signed Constant (SC) weight distribution. A dash de-
notes a configuration that was not tested by the authors.
Our method performances are reported for both the thresh-
olding and averaging setups detailed in section 5.3.3. For
Edge-popup, we use the value of k which yeilds the best
test accuracy for Conv{2,4,6}, as reported in [157]. For
smaller networks, ASLP outperforms the other methods,
with the exception of the Signed Constant (SC) setup for
Conv2 and Conv4. However, for Conv6, Arbitrarily Shifted
Log Parametrisation (ASLP) performance is superior when
data augmentation is disabled, while Edge-popup achieves
better results with data augmentation enabled (except for
the Weight Rescaling (WR) setup). 154

5.4 Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)
test accuracy against Edge-Popup and Supermask [157,
215] on both CIFAR-10 and CIFAR-100 datasets using
VGG16 and ResNet-20 architectures. The results show-
case the scenario with data augmentation, Weight Rescal-
ing (WR) and Signed Constant (SC) weight distribution.
Across all datasets and network architectures, Arbitrarily
Shifted Log Parametrisation (ASLP) surpasses the compar-
ative methods in its thresholding configuration, detailed in
section 5.3.3. 155

5.5 Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)
test accuracy against Edge-Popup and Supermask [157,
215] on TinyImageNet datasets using ResNet-18 architec-
ture. The results showcase the scenario with data augmen-
tation, Weight Rescaling (WR) and Signed Constant (SC)
weight distribution. The thresholding and averaging con-
figurations are detailed in section 5.3.3. Edge-popup [157]
performs the best in this scenario. 155

xxiii

LIST OF TABLES

5.6 Comparison of observed pruning rates of the Arbitrarily
Shifted Log Parametrisation (ASLP) method across vari-
ous neural network architectures and datasets (CIFAR-10
and CIFAR-100) after applying the thresholding procedure,
detailed in section 5.3.3. The results are presented as mean
percentages of pruned weights with their respective standard
deviations, for the setup with data augmentation, Weight
Rescaling (WR) and Signed Constant (SC) weight distribu-
tion. 156

A.1 Conv4 test accuracy on CIFAR-10, with λ = 50, for increas-
ing (incr.) and decreasing (decr.) scheduling for various
pruning rates and values of the parameter p. The networks
have been trained for 300 epochs. 173

xxiv

Acronyms
NaN Not a Number

AI Artificial Intelligence

ANN Artificial Neural Network

ASLP Arbitrarily Shifted Log Parametrisation

BN Batch Normalisation

CNN Convolutional Neural Network

Conv Convolutional

DNN Deep Neural Network

DWR Dynamic Weight Rescaling

FC Fully Connected

FFT Fast Fourier Transform

FLOP Floating Point Operation

FP32 single-precision floating-point format

FPGA Field Programmable Gate Array

GPU Graphics Processing Unit

GS Gumbel-Softmax

IoT Internet of Things

KD Knowledge Distillation

LT Lottery Ticket
xxv

LIST OF TABLES

LTH Lottery Ticket Hypothesis

MAC Multiply-Accumulate

MLP Multilayer Perceptron

NAS Neural Architecture Search

OBS Optimal Brain Surgeon

ReLU Rectified Linear Unit

SC Signed Constant

SGD Stochastic Gradient Descent

SKD Scaled Kaiming distribution

SR Smart Rescale

STE Straight Through Estimator

STGS Straight Through Gumbel-Softmax

TA Teacher Assistant

WR Weight Rescaling

xxvi

Remerciements
La thèse est un défi aussi bien scientifique qu’humain et qui ne peut être
relevé sans l’aide de nombreuses personnes qui m’ont apporté leur temps,
leurs idées, leurs conseils et leur soutien. Je souhaite ici les remercier.

Je tiens tout d’abord à remercier mon directeur de thèse Hichem
Sahbi pour son encadrement durant ces quelques années.

Je souhaite remercier Jenny Benois-Pineau et Titus Bogdan Za-
haria pour avoir accepté d’être rapporteurs de cette thèse et pour le temps
consacré à ce manuscrit. Mes remerciements s’étendent également à Pierre
Beauseroy, Nicolas Gac et Vincent Gripon pour leur participation en
tant que membres du jury.

Cette thèse est une thèse CIFRE, menée en partenariat avec Netatmo
où j’ai pu rencontrer et travailler avec de brillants collègues. Je remercie
tout particulièrement Alice Lebois, Mohammed-Amine Alaoui mais
aussi Guillaume Michel et Mehdi Felhi qui ont été de grands soutiens
et m’ont aidé à progresser tout au long de cette thèse. Je veux également
remercier Chadi Gabriel, Steeve Vu, Fabien Freling et Yacine Me-
zaguer et toutes les autres personnes que j’ai pu côtoyer chez Netatmo
pour les discussions enrichissantes, leur soutien, leurs coups de main et les
bons moments que nous avons pu passer ensemble.

Je remercie l’école doctorale et en particulier son directeur Habib
Mehrez pour sa bienveillance, son soutien et son aide précieuse.

Je remercie mes proches dont l’intensité et l’exigence de ces quelques
années m’ont un peu éloigné, à mon grand regret. Je remercie mes amis
qui m’ont accompagné et soutenu. Je pense à Hugo, Pierre, Antoine,
Nicolas, Arnaud, Paul-Octave, le groupe des Lamas et ses nombreux

xxvii

LIST OF TABLES

docteurs, le groupe des Cryptogourmets, Arthur, Brian et en particu-
lier Léo pour m’avoir inspiré à entreprendre, moi aussi, l’aventure qu’a été
cette thèse.

Je remercie très chaleureusement Odile pour son aide inestimable et
ses précieux conseils qui m’ont aidé à avancer et ne pas baisser les bras.

Je remercie mes parents Denis et Véronique ainsi que ma sœur Pau-
line. Ils m’ont toujours soutenu dans tous les défis que je m’étais lancé et
j’espère que je les aurai rendus fiers d’être arrivé au bout de celui-ci.

Enfin, je remercie Alice, qui, en plus d’être ma moitié, a été ma béquille
pendant ces quelques années. Elle m’a écouté, soutenu, accompagné et en-
couragé, parfois au mépris de ses propres ambitions et projets. Elle a été
mon moteur, tant et si bien que tout ceci n’aurait pas été possible sans elle.

À toutes celles et à tous ceux que j’ai cités, mais aussi à celles et ceux
que j’ai oubliés, merci.

xxviii

Chapter 1

Introduction

1

2

Contents
1.1 Context . 3
1.2 Industrial Context . 6
1.3 Why Deep learning ? . 6
1.4 Challenges . 7
1.5 Contributions . 9
1.6 Outline . 11

1.1 Context
From the spinning jenny, blast furnace and steam engine that sparked the
first industrial revolution to the Internet of Things (IoT) devices that drives
the fourth, the objective of mechanising labour and optimising productiv-
ity has been a persistent theme throughout the past centuries. The first
industrial revolution, which dates back to 1760, introduced mechanisation
through the use of water wheels and steam engines. The second industrial
revolution, starting towards the end of the XIXth century, is linked to
the development of automobiles, crude oil extraction and assembly lines
powered by electric energy. The third industrial revolution, also called the
digital revolution, took place in the second half of the XXth century and
brought electronics, information and communication technology, and auto-
mated production. The Fourth Industrial Revolution, often known as In-
dustry 4.0, inaugurates the digital integration of production chains as well
as smart and connected devices that lead to more efficient manufacturing
systems. The fourth industrial revolution focuses on the interconnectivity
of devices and the development of their computational capabilities. This
track leads to the emergence of ever-connected IoT devices with embedded
computing facilities, such as smartphones, autonomous vehicles or satel-
lites, that leverage Artificial Intelligence (AI) algorithms.

3

1.1. CONTEXT

In parallel with these industrial revolutions, the field of AI has seen
substantial growth and development. The term Artificial Intelligence was
first used at the Dartmouth workshop in 1956 which is considered to be the
founding event of AI as a research field [133]. It launched decades of re-
search into machine learning and natural language processing among others
[142]. In the subsequent decades, AI saw significant strides, including the
development of rule-based systems, called expert systems [49], in the 1970s
and the early exploration of machine learning in the 1980s [169]. These
advancements occurred alongside the third industrial revolution, setting
the stage for further progress in AI. In the late XXth and early XXIst cen-
turies, coinciding with the premises of the fourth industrial revolution and
helped with substantial progress in computational power of Graphics Pro-
cessing Units (GPUs), AI started to draw tremendous attention from both
researchers and industrials with the advent of Deep Learning. The latter
is a subfield of machine learning which uses multi-layer Artificial Neural
Network (ANN) to learn and model complex patterns in datasets in an end-
to-end fashion, bringing significant improvement over manually engineered
data representation. The fast development of Deep learning has been driv-
ing advancements in various domains such as natural language processing
[12, 27, 193], image and speech recognition [102, 175, 67, 61, 13, 4], text and
image generation [53, 98, 12], video game playing [173, 174] and molecule
folding [95] to name a few.

The conquest of new fields and the quest for performance improvement
of Deep Learning models have led to a significant increase in their compu-
tational complexity and size (see figure 3.12), particularly regarding their
number of parameters. The sheer size of modern ANNs, called Deep Neu-
ral Networks (DNNs), presents a significant barrier to their deployment
on embedded devices or IoT devices whose memory and computational
resources are inherently limited. To circumnavigate this hurdle, the preva-
lent approach is to offload computations onto remote servers, leveraging
the ever-interconnected nature of modern IoT devices and appliances.

Nonetheless, several compelling reasons exist for conducting embedded
computations instead of moving them to the cloud. First, processing the
data locally on premises ensures better data privacy, since the latter does
not need to leave the device to be processed on the cloud. Indeed cloud
instances can be located on various continents or countries where the legis-
lation about data privacy might be different from the one of the countries

4

CONTENTS

where the data is collected. Second, local computations can distribute the
processing and limit communications. This is particularly relevant in more
ways than one: first, it can reduce the cost of communication and band-
width, which are typically billed to companies by cloud providers. Second,
in some scenarios, the device might not have access to a large bandwidth
or cannot afford to transmit a lot of data, which can be the case for remote
areas or some devices with a low power budget. Third, local computations
can lead to greater responsiveness by reducing latency, which might be
critical in some applications such as autonomous vehicles. Fourth, local
computations can enable autonomy, which is particularly relevant for de-
vices that cannot rely on internet access, such as Mars rovers, submarine
drones or any other devices that need to process data in radio silence.

The fourth industrial revolution and the rapid evolution in the field of
AI have opened up a myriad of applications, with AI algorithms and in
particular DNNs, offering significant potential to enhance the capabilities
of IoT devices. However, the deployment of these advanced DNNs on IoT
devices presents a significant challenge due to the inherent computational
and memory constraints of such devices. The sheer size and complexity
of modern DNNs, which have been instrumental in their success, become
a barrier when considering on-device deployment. This presents a com-
pelling case for the development of lightweight neural networks, tailored
for IoT devices, that maintain the power of their larger counterparts while
being significantly reduced in size and computational requirements. Such
lightweight neural networks can also benefit all areas where saving compu-
tational resources is of interest. Consequently, there is a need for dedicated
research efforts to design methods that yield lightweight neural networks.
This thesis aims to contribute to this effort by introducing pruning methods
that can reduce the size of neural networks while preserving their perfor-
mances, with a focus on topology selection. We introduce two new pruning
methods: The first performs joint topology and weight optimisation allow-
ing for a minimal loss in performance after pruning compared to standard
methods. The second approach does not require any weight training and
instead focuses on stochastic yet differentiable topology selection, achieving
compelling results overall and outperforming other related state-of-the-art
methods that, again, do not train the weights.

5

1.2. INDUSTRIAL CONTEXT

1.2 Industrial Context
This research work is a CIFRE thesis with Netatmo, a French company
specialising in smart devices that is now part of the Legrand Group. No-
tably, Netatmo commercialises security cameras for individual use that
perform tasks such as face recognition and object detection using DNNs.
The objective is to run the DNNs directly on these cameras, sidestepping
the need to send data to distant servers. This approach aligns well with
the reasons outlined in the previous section, particularly in ensuring data
privacy. Moreover, it allows for a subscription-free business benefiting the
end user, since there is no need to pay for cloud infrastructures dedicated
to running DNNs. Therefore, Netatmo needs to develop lightweight neu-
ral networks that can be run on embedded devices while maintaining the
performance of their larger and more complex counterparts. The models
should be lightweight in order to, on the one hand, run on limited hardware,
and on the other hand, be fast enough to perform, for instance, real-time
intruder detection and alerting.

1.3 Why Deep learning ?
Deep learning is a subfield of machine learning that is the subject of in-
tense research efforts and numerous publications. It employs Artificial
Neural Networks, called Deep Neural Networks (DNNs), that aim to learn
and model complex patterns in unstructured data in an end-to-end fash-
ion. Deep learning models have proven their effectiveness in numerous
domains and have been particularly performant in the field of computer
vision [67, 160, 121]. Computer vision, which lies at the heart of Netatmo
smart camera functionalities, encompasses algorithms that enable comput-
ers to interpret and understand the visual world and in particular detect
and classify objects.

DNNs are the backbone of most advanced computer vision applica-
tions, including Netatmo facial recognition and object detection features.
More specifically, Convolutional Neural Networks (CNNs), a specific type
of DNNs can process images directly, reducing the need for manual feature
extraction, and their capacity for hierarchical feature learning makes them
particularly effective for tasks such as object recognition and classification.
Their architecture is such that they perform well at recognising patterns

6

CONTENTS

in unstructured data and are able to learn gradually more complex and
abstract concept representations from raw data, enabling them to outper-
form other machine learning models and humans in computer vision tasks
(see figure 1.1).

Al
ex

N
et

 (2
01

2)

ZF
N

et
 (2

01
3)

VG
G

 (2
01

4)

G
oo

gL
eN

et
 (2

01
4)

R
es

N
et

 1
01

 (2
01

5)

R
es

N
ex

t 1
01

 (2
01

7)

N
AS

N
et

 (2
01

8)

Ef
fic

ie
nt

N
et

 (2
01

9)

H
um

an
s

Models

0

2

4

6

8

10

12

14

Im
ag

eN
et

 T
op

-5
 T

es
t E

rro
r

Figure 1.1: Models top-5 accuracy on ImageNet [25] compared to human per-
formance.

Given the nature of tasks the Netatmo cameras are designed to per-
form, deep learning and Deep Neural Networks are not just a choice but a
necessity. They represent the state of the art in computer vision tasks that
outperforms other algorithms and allows for accurate and reliable object
detection and recognition.

1.4 Challenges
While deep learning, particularly through the use of CNNs, is the technol-
ogy of choice for computer vision applications, it comes with its challenges
that need to be addressed, especially in the context of deploying these deep
and large models on embedded devices. These challenges include model
complexity and computational requirements. The necessity of compressing
neural networks has been highlighted previously and also comes with its

7

1.4. CHALLENGES

challenges that include: preserving the performance and controlling the
size of the compressed model as well as training time.

One of the most significant challenges in deploying deep learning models
and especially CNNs on embedded devices is the large model size. These
models often have millions of parameters and this makes them computa-
tionally heavy and challenging to fit into the limited memory of embedded
devices. Secondly, these complex models require substantial computational
resources to operate. This translates into slow computations which is a crit-
ical issue for devices which aim to perform real-time tasks.

Compressing large neural networks is a necessity to deploy them on
embedded devices. However, it comes with its challenges. First, the
compressed model should maintain the performance of the original model.
However, the original large model is trained with all its parameters and
thus depends on all of them. Consequently, removing more than a few can
lead to degraded performance.

Second, the compressed model should be small enough to fit into the
limited memory of embedded devices. It means that the process should be
controlled to ensure that the size of the resulting model does not exceed
the memory budget. However, compressing the model too much can lead
to an irrecoverable loss in performance. The compression procedure and
hyperparameters should be carefully chosen to ensure that the produced
model has enough capacity to perform the task at hand. This is often
achieved by grid-searching the optimal set of hyperparameters, which can
be time-consuming.

Third, the compression process should be fast enough to be practical.
Indeed, this process is often performed after the training of the original
model and often requires fine-tuning the compressed one to compensate
for the loss of performance. This fine-tuning step can be computationally
expensive and time-consuming, effectively doubling the training time of
the model in some scenarios.

To conclude, while deep learning and CNNs represent an exciting ad-
vancement in computer vision applications, several challenges need to be
addressed for efficient and effective deployment on embedded devices. Ad-
dressing these challenges forms the crux of this research, with a particular

8

CONTENTS

focus on model compression techniques to reduce the size and complexity
of neural networks without significant loss in performance.

1.5 Contributions
This thesis tackles the challenge of compressing DNNs through pruning,
a technique that aims to reduce the size of a neural network by removing
redundant or unnecessary parameters, subsequently detailed in chapter 3.
The contributions detailed in this manuscript focus on methods to identify
the parameters to prune as well as minimise the impact of their removal
on the final performance. These contributions are as follows:

Budget-aware pruning with weight reparametrisation. The two
main challenges when pruning a neural network are first, determining which
weights should be removed and then, mitigating the loss of performance
introduced by weight removal. The first challenge is often referred to as
determining the saliency of the weights, which is a score that reflects the
importance of the weights in the network. The second challenge is often
sidestepped and the pruned network is simply fine-tuned to recover the lost
performance. To address both of these challenges, we propose the following
main contributions:

• A numerically stable reparametrisation function, used in both our
weight reparametrisation and our budget regularisation loss (subse-
quently detailed), that acts as a surrogate differentiable ℓ0 norm.

• A weight reparametrisation that embeds the saliency score of the weight
in its expression and therefore value. This reparametrisation allows to
soft-prune the weights during training thereby significantly mitigating
the performance drop that occurs after pruning. Moreover, this repara-
metrisation does not require the introduction of auxiliary variables to
determine the saliency of the weights, leading to a minimal impact on
memory and computational requirements.

• A budget regularisation loss that allows to drive the optimisation pro-
cedure to respect a given budget. This budget regularisation loss ben-
efits directly from the aforementioned reparametrisation function to
compute the current weight budget. It is optimised jointly with the

9

1.5. CONTRIBUTIONS

original loss, leading to an optimal solution in terms of performance
and budget.

• A comprehensive set of experiments that demonstrate the effectiveness
of our method and validate each one of its components on various data-
sets and architectures.

These contributions have been published in the following article:

• Robin Dupont, Hichem Sahbi, and Guillaume Michel. Weight repara-
metrization for budget-aware network pruning. In 2021 IEEE Inter-
national Conference on Image Processing, ICIP 2021, Anchorage, AK,
USA, September 19-22, 2021, pages 789–793. IEEE, 2021.

Pruning without weight training with stochastic sampling. As
mentioned above, a major hurdle in pruning is determining which weights
to remove. This is especially challenging since weights, and consequently
their saliency, can fluctuate throughout training. This implies that prun-
ing should either be reversible or performed at the end of training. We
propose a different approach that does not require training the network
to determine the saliency of the weights, the latter being fixed throughout
the process. Instead, we sample a subset of weights (effectively pruning
the other weights) forming a subnetwork of the original network and eval-
uate its performance. This allows us to search for a topology that is both
lightweight and performant inside the original network without training its
weights. The main contributions of this method are as follows:

• A stochastic weight sampling method that is computationally effi-
cient, numerically stable, differentiable and allows sampling weights
while training their probability of being selected, represented by la-
tent masks. The optimisation of the latter allows to learn the saliency
of the weights without training the network, and therefore identifying
and extracting an effective subnetwork.

• A pruning strategy for the masks that freeze the topology and performs
better than averaging methods previously used in the state-of-the-art.
Moreover, this pruning strategy allows to discover the optimal pruning
rate for the network, eliminating the need for costly grid search to
determine it.

10

CONTENTS

• An efficient learnt-based weight rescaling mechanism to compensate
for the disruption in weight distribution caused by stochastic sampling.
This rescaling is less computationally intensive, more flexible and al-
lows for smoother variations of the scaling factor than other rescaling
methods.

• A comprehensive set of experiments that demonstrate the effectiveness
of our method and validates each one of its components on various
datasets and architectures, as well as comparison with other closely
related state-of-the-art methods in various configurations.

• A public repository containing the implementation of our method and
the methods we compare against, as well as detailed code and instruc-
tions to reproduce our results.

These contributions have been published in the following article:

• Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi, and Alice
Lebois. Extracting effective subnetworks with Gumbel-Softmax. In
2022 IEEE International Conference on Image Processing, ICIP 2022,
Bordeaux, France, 16-19 October 2022, pages 931–935. IEEE, 2022.

1.6 Outline
The rest of this thesis is organised as follows:

Chapter 2 offers an introduction to deep learning, providing a detailed
overview of its foundational and core concepts. It first explores early ar-
chitectures, beginning with the Perceptron and the Multilayer Perceptron
(MLP). The focus of the chapter then shifts towards neural network train-
ing, giving formal definitions of the loss function, regularisation, and op-
timisation process. A dedicated section delves into Convolutional Neural
Networks, exposing and detailing their building blocks, and the evolution
of their architectures. Then, the architectures used in the experiments of
chapters 4 and 5 are detailed. Additionally, this chapter lists and describes
prominent datasets, namely CIFAR-10, CIFAR-100, and TinyImageNet,
and discusses their respective train, validation, and test sets.

11

1.6. OUTLINE

Chapter 3 introduces deep neural network compression and presents
state-of-the-art methods divided into different families. The chapter be-
gins with acceleration techniques and presents a range of methods whose
goal is to speed up matrix operations or convolutions. Then, it explores the
teaching paradigm, highlighting methods that rely on a large pre-trained
network to improve the training of lightweight ones. Furthermore, the
chapter addresses the design aspects of lightweight architectures introduc-
ing building blocks for efficient architecture design and Neural Architecture
Search. Afterwards, the chapter discusses methods to compress and opti-
mise existing architectures and in particular pruning. Finally, the chapter
presents the positioning of our methods and the rationale behind them.

Chapter 4 presents our pruning method based on weight reparame-
trisation and budget regularisation. It starts by outlining closely related
work. Then, the core method components are examined, starting with our
weight reparametrisation and then our budget loss. Afterwards, a general
overview of the algorithm is provided. Furthermore, the chapter details
experiments assessing our method performance in various configurations
as well as experiments validating the components of our method and the
choices of hyperparameters. A conclusion summarises the key findings and
highlights of our method for neural network pruning.

Chapter 5 delves into our stochastic pruning method without weight
training. It starts with an introduction and examination of closely related
work. Then, it details the first core component of our method, namely
Arbitrarily Shifted Log Parametrisation, a method for extracting effective
subnetworks using the Gumbel-Softmax technique that solves various issues
that arose from previous methods. Afterwards, it introduces our weight-
rescaling technique and presents its main benefits, as well as our pruning
strategy to freeze the stochastic topology. Subsequently, a method and
algorithm overview outlines the key points of our methods. Furthermore,
the chapter exposes a comprehensive set of experiments that compares our
method against other state-of-the-art methods in various scenarios and
validates the components of our method. The chapter concludes by sum-
marising our findings and results.

12

Chapter 2

Deep Learning Overview

13

14

Contents
2.1 Introduction . 15
2.2 Early Architectures . 17

2.2.1 Perceptron . 17
2.2.2 Multilayer Perceptron 18

2.3 Neural Network Training 19
2.3.1 Functional Definition 20
2.3.2 Loss Function and Regularisation 20
2.3.3 Loss Optimisation 23

2.4 Convolutional Neural Networks for Computer Vision . . . 26
2.4.1 Building Blocks . 26
2.4.2 Architectures Evolution 31
2.4.3 Architectures Used in Experiments 34

2.5 Datasets . 36
2.5.1 CIFAR-10 . 39
2.5.2 CIFAR-100 . 39
2.5.3 TinyImageNet . 40
2.5.4 Train, Validation and Test Sets 41

2.1 Introduction
Deep Learning is a subfield of machine learning that focuses on the study of
Deep Neural Networks (DNNs) which have their roots in Artificial Neural
Networks (ANNs). DNNs aim to learn a representation from unstructured
data such as raw images [102], text [12] or audio [61], in an end-to-end
fashion. DNNs have been used to solve a wide range of tasks, including
image and speech recognition [102, 175, 67, 61, 13, 4], natural language
processing [12, 27, 193], object detection [159, 160], semantic segmentation
[125, 118], text and image generation [53, 98, 12] as well as exotic domains
like video games [173, 174] or molecules folding [95]. ANNs were initially
conceptualised based on the understanding of biological neural networks

15

2.1. INTRODUCTION

present in the brain [134, 73]. Rosenblatt proposed in [166] a theoretical
model of a neuron, denoted the perceptron, which was capable of learning
a linear decision boundary. The perceptron model was later extended to
multiple layers of neurons, giving rise to the Multilayer Perceptron (MLP)
[167, 169]. A Multilayer Perceptron is a type of artificial neural network
that extends the concept of a single-layer perceptron by including one or
more hidden layers of neurons connected downstream from an input layer
and upstream to an output layer. Each layer is fully connected to the next,
allowing the model to learn and represent more complex, non-linear rela-
tionships in the input data. Although more capable than the perceptron,
the MLP is still limited by its depth. The next advance came from the
stacking of multiple layers, leading to Deep Neural Networks.

In the context of DNNs, the term deep denotes the stacking of many
layers within a neural network. The concept of DNNs is based on the idea
that the depth and the numerous layers can help in learning features at
various levels of abstraction, enabling the network to learn complex hi-
erarchical pattern representations. For instance, in the context of image
recognition, lower layers learn local features like edges and textures, while
deeper layers learn to identify more abstract concepts like shapes or objects.

The rise of DNNs was made possible by several factors. On the one
hand the increase in computational power, and in particular the use of
GPUs, made the training of large and deep networks feasible. Indeed,
AlexNet, the first CNN to win the ImageNet Large Scale Visual Recog-
nition Challenge [102], was trained on two GPUs in parallel to accelerate
computations. Nowadays, the use of GPUs or dedicated hardware such
as Tensor Processing Unit [94] is ubiquitous and supported by all the ma-
jor deep learning frameworks [1, 147]. On the other hand, the availability
of large-scale datasets such as ImageNet [25] allowed to train or pre-train
deep networks with millions of parameters without overfitting.

This chapter aims to give an overview of the different neural network
architectures, building blocks, training techniques and datasets that are
widely used in Deep Learning for computer vision and in our experiments.
Section 2.2 introduces the early neural network architectures, namely the
perceptron and the MLP. Section 2.3 focuses on the functional definition of
a neural network and its training. Section 2.4 presents the building blocks
and architectures of various CNNs for computer vision, and in particular

16

CONTENTS

the ones we benchmark our methods with (see sections 4.4 and 5.5). Fi-
nally, Section 2.5 gives an overview of the most prevalent datasets that we
used in our experiments.

2.2 Early Architectures
In this section, we present the perceptron [166] and then the Multilayer
Perceptron [167, 169]. Both are the two founding neural network architec-
tures that led to the development of Deep Neural Networks.

2.2.1 Perceptron
The perceptron is a model of artificial neuron, capable of learning a lin-
ear decision boundary. It was proposed by Rosenblatt in 1958 [166] and
conceptualised based on the understanding of biological neural networks
present in the brain [134, 73]. The perceptron is composed of inputs that
are weighted and summed before being passed through a nonlinear func-
tion referred to as an activation function. The conceptual representation of
the perceptron is displayed in figure 2.1 and its mathematical formulation
is defined in equation (2.1):

ŷ = g(
n∑

i=1
wi · xi + b) (2.1)

where xi is the ith input, wi its associated weight, n is the number of
inputs, b is the bias, g is the activation function, and ŷ is the output of
the perceptron. This formulation can also be written in vector form as in
equation (2.2):

ŷ = g(wT x + b) (2.2)

where x is the vector of inputs and w is the vector of weights. The ac-
tivation function g is typically a nonlinear function, such as the sigmoid
or the hyperbolic tangent (see figure 2.5). Due to its shallow architecture,
the perceptron cannot learn complex decision boundaries. Nevertheless, it

17

2.2. EARLY ARCHITECTURES

is possible to stack several perceptrons to learn nonlinear decision bound-
aries, leading to a Multilayer Perceptron.

Σ

w1

w2

w3

wn

g(.)

x1

x2

x3

xn

inputs weights

summation activation
function

b

ŷ

...

Figure 2.1: Conceptual scheme of the perceptron. Each input xi is multiplied
by its associated weight wi and summed to the other weighted inputs. The bias
b is added to the sum and the result is passed through an activation function g
to produce the output ŷ.

2.2.2 Multilayer Perceptron
The Multilayer Perceptron (MLP) is an extension of the perceptron model,
comprising multiple layers of perceptrons, also referred to as neurons [169].
A MLP with one hidden layer is represented in figure 2.2. In the latter,
the circles represent the neurons and the connections between them, rep-
resenting weights, are materialised by lines. The MLP is the simplest type
of feedforward ANN. Feedforward refers to the fact that the connections
between neurons in the MLP form a directed acyclic graph, where the out-
puts of the neurons from one layer are passed to the next, with no backward
connections or feedback. Using the same notations as in equation (2.2),
the vector form of the MLP displayed in figure 2.2 can be written as in
equation (2.3), where the subscript of activation functions gi, weight ma-
trices wi and bias vectors bi denotes their belonging to the ith layer.

ŷ = g2(wT
2 · g1(wT

1 · x + b1) + b2) (2.3)

18

CONTENTS

Each layer of the MLP, being fully connected to the next one, enables
the MLP to handle problems that the perceptron cannot solve, such as
problems requiring nonlinear decision boundaries. Furthermore, Cybenko
proved in [24] that an MLP can approximate continuous functions on com-
pact subsets of Rn. This result is known as the Universal Approximation
Theorem. Before the emergence of Deep Learning, MLPs have been ap-
plied to various domains, including voice recognition, image recognition,
and machine translation [199].

x1

x2

x3

xn

input layer

...

hidden layer output layer

ŷ1

ŷ2

ŷ3

Figure 2.2: Conceptual scheme of a MLP with one hidden layer. Each circle
represents a neuron and each line a connection associated with a weight.

2.3 Neural Network Training

Neural Network Training revolves around the optimisation of a mapping
function that learns to predict an output given input data by adjusting
its internal parameters, also referred to as weights. This optimisation, also
called training, involves iteratively tuning these weights so that the discrep-
ancy between the output predicted by the model and the reference output
is minimised. Weights tuning relies on gradient-based methods that hinge
around two core components: the backpropagation algorithm to compute
the gradients and the Stochastic Gradient Descent (SGD) algorithm to
update the weights.

19

2.3. NEURAL NETWORK TRAINING

2.3.1 Functional Definition
Neural networks can be defined as a mapping function from an input space
X to an ouput space Y . This mapping function f is characterised by a
set of parameters θ, often called weights. The training of a neural network
consists in tuning the parameters θ so that, given an input X, the map-
ping function f output, denoted ŷ, is as close as possible to the associated
true output y. This training is done iteratively by using example pairs
(X, y) ∈ X × Y , where X ∈ X is the input and y ∈ Y is the output. In
the context of image classification, X is an image and y is a label that
indicates the class of the associated image. A functional representation of
a neural network is given in equation (2.4), where f is the neural network,
θ is the set of parameters of the network, X ∈ X is the input given to the
neural network and ŷ is the output.

f : X → Y

X 7→ f(X, θ) = ŷ

(2.4)

Considering image classification, the output ŷ is a probability vector
where the largest coefficient is the one whose index corresponds to the pre-
dicted class of the input image. This vector is generally converted into a
one-hot vector, where the only non-zero coefficient is at the index of the
predicted class. The true label y, referred to as the ground truth, is the
class index so that y ∈ J0; C − 1K, where C is the number of classes con-
sidered. The ground truth can also be converted into a one-hot vector.

2.3.2 Loss Function and Regularisation
Training a neural network aims at finding the optimal parameters θ that
maximise a performance, quantified by a metric, often based on the dis-
crepancy between the predicted output ŷ and the true output y. However,
optimising directly the metric might be intractable. To solve this issue,
one may define a differentiable cost function and minimise the latter as a
proxy for optimising the metric. Considering k example pairs (Xk, yk), the
cost function J (θ), also referred to as the empirical risk, is defined in the
following equation:

20

CONTENTS

J (θ) = 1
k

k∑
i=1
L(f(Xk, θ), yk) (2.5)

where L is the loss function. Note that the true data distribution, and
therefore the risk, is unknown. This is why the empirical risk, computed
with a set of example pairs, is used instead. The minimisation of the
empirical risk alone is not sufficient to ensure good overall performance.
Indeed, the neural network could learn to perfectly predict the output of
the training set but may fail to generalise to unseen data. This phenomenon
is called overfitting. To prevent overfitting, we add a regularisation term
to the empirical risk. The regularisation term, denoted R, is a function
of the parameters θ of the neural network which penalises the complexity
of the model, and thus prevents overfitting. To account for regularisation,
the cost function in equation (2.5) is updated to:

Jr(θ) = 1
k

k∑
i=1
L(f(X, θ), y) +R(θ) (2.6)

Loss function. In equations (2.5) and (2.6), the loss function L is a
measure of the discrepancy between the ground truth y and the predicted
output. Contrary to the metric P which might be non-differentiable, the
loss function is differentiable so that its minimisation can be achieved us-
ing gradient-based methods, subsequently detailed in section 2.3.3. The
choice of the loss function depends on the task at hand. For classification
tasks (not only images), the loss function is often the cross-entropy loss.
For a binary classification problem, the ground truth is a binary variable
y ∈ {0, 1} and the predicted output is a scalar f(X, θ) = ŷ ∈ [0, 1]. The
binary cross-entropy loss is defined as follows:

L(ŷ, y) = −y log(ŷ)− (1− y) log(1− ŷ) (2.7)

The binary cross-entropy loss defined in equation (2.7) can be extended to
problems with more than two classes. For a classification problem with C
classes, the ground truth is a one-hot vector y ∈ {0, 1}C and the output is

21

2.3. NEURAL NETWORK TRAINING

a C-dimensional vector f(X, θ) = ŷ ∈ RC . The multi-class cross-entropy
loss is defined as follows:

L(ŷ, y) = −
C∑

i=1
yi log (ϕ(ŷ)i) (2.8)

In the above equation, ŷ is the unnormalised raw output vector of the
neural network and ϕ is the softmax function, whose expression is given in
equation (2.9). The softmax function is used to convert the raw output vec-
tor of real numbers into a probability distribution. Note that some models
which use the softmax as the activation function of their last layer output
directly a probability distribution, in which case the softmax is not needed.

Considering a vector z = [z1, . . . , zn], the j-th component of vector z
normalised by the softmax function is given by:

ϕ(z)j = exp(zj)
n∑

k=1
exp(zk)

(2.9)

Regularisation. The regularisation term R is a differentiable function of
the weights θ. It acts as a control mechanism to avoid overfitting by pre-
venting the weights of the neural network from becoming too large, which
can lead to overly complex models that overfit the training data. This is
typically achieved by adding a penalty proportional to the magnitude of
the weights, thereby keeping them small.

Common types of regularisation include ℓ1 and ℓ2 regularisation, whose
expressions are shown in equations (2.10) and (2.11) respectively. ℓ1 regu-
larisation [188], adds a penalty equal to the absolute value of the magnitude
of the weights. On the other hand, ℓ2 regularisation [78], adds a penalty
equivalent to the square of the magnitude of the weights. Both methods
aim to reduce the magnitude of the weights, but ℓ1 regularisation is more
targeted towards feature selection, effectively pushing some weights to 0,
whereas ℓ2 restrains globally their magnitude.

The regularisation term R is added to the cost function with a regu-
larisation coefficient, usually denoted as λ, which is a hyperparameter that

22

CONTENTS

balances the trade-off between fitting the training data (minimising the
loss L) and limiting the complexity of the model (minimising R).

For a network with L layers and parameters θ = {w1, . . . , wL}, the ℓ1
and ℓ2 regularisation term is defined as follows:

Rℓ1(θ) = λ
L∑

i=1
∥wi∥1 (2.10)

Rℓ2(θ) = λ

2
L∑

i=1
∥wi∥2

2 (2.11)

where ∥.∥1 and ∥.∥2
2 respectively denote the sum of the absolute value and

the sum of the squaring of each element of the vector.

2.3.3 Loss Optimisation
As mentioned before, the training of a neural network involves finding the
optimal set of parameters θ that minimises a cost function J (θ). This pro-
cess of optimisation is typically carried out using gradient-based methods
which rely on the iterative adjustment of the parameters in the opposite
direction of the gradient of the cost function. The gradient of a function
provides the direction of the steepest ascent at a given point [11]. Thus, by
moving the parameters in the opposite direction of the gradient, we seek
to descend to a local minimum of the function.

Backpropagation. One critical step in the optimisation process is the
computation of the gradient of the cost function with respect to the param-
eters, ∇J (θ). These gradients are computed with the backpropagation al-
gorithm [169] which is an application of the chain rule (see equation (2.12))
to efficiently compute these gradients. It involves a forward pass through
the network to compute the outputs and thus the loss, and a backward pass
to calculate the gradients. During the backward pass, the partial derivative
of the cost with respect to each parameter is computed, starting from the
output layer and going back to the input layer. The previously computed

23

2.3. NEURAL NETWORK TRAINING

derivatives from the subsequent layers are used to compute the ones of
the earlier layers, making the backpropagation algorithm computationally
efficient.

∂z

∂x
= ∂z

∂y

∂y

∂x
(2.12)

Stochastic Gradient Descent. Once the gradients are calculated, they
are used to update the parameters. The most prevalent method for pa-
rameter updates is Stochastic Gradient Descent (SGD), a derivative of the
Robbins–Monro algorithm [164]. In SGD, the gradient of the loss function
is computed for a random subset of the data (a batch or mini-batch), and
the weights are shifted in the direction that decreases the loss function.
This is achieved by subtracting the gradient of the cost function with re-
spect to that parameter multiplied by a learning rate η:

θ
(t+1)
i = θ

(t)
i − η

∂J (θ)
∂θi

(2.13)

where θ
(t)
i is the ith parameter at iteration t. The SGD algorithm is de-

tailed in algorithm 1. The use of mini-batches in SGD leads to a trade-off
between computational efficiency and estimation accuracy. Indeed, the
gradient is estimated using a subset of the entire training set, which is, on
the one hand, less accurate than using the whole dataset, but on the other
hand, less computationally intensive. The size of the mini-batch, which
is a hyperparameter of the training algorithm, determines this trade-off
and should also be chosen depending on the computational and memory
resources available. Note that the size of modern datasets, subsequently
detailed in section 2.5, makes it intractable to evaluate the gradients on
the whole dataset in one step, hence the use of mini-batches.

Learning Rate. The learning rate is a hyperparameter that determines
the step size of the update at each iteration while moving toward a min-
imum of the loss function (see equation (2.13)). Setting the learning rate
too high can cause the learning process to converge too quickly or overshoot
while setting it too low can make the learning process slow to converge, as

24

CONTENTS

Algorithm 1 Stochastic Gradient Descent Algorithm
Require: Learning rate η, mini-batch size m, Initial parameters θ(0), m′ ≥

m training pairs (X, y) ∈ X × Y , Loss function J
while Stopping criterion not met do

Sample mini-batch of size m from training set
Compute gradient estimate on mini-batch: ĝ ← ∇J (θ)
Update parameters: θ(t+1) ← θ(t) − ηĝ

end while
return Optimal parameters θ

shown in figure 2.3.

6 4 2 0 2 4 6
x

0

5

10

15

20

25

30

35

(x
)

= 0.01
= 0.1
= 1.01

Figure 2.3: Illustration of the effect of the learning rate on the convergence of
the gradient descent. The gradient descent has been applied iteratively for 20
epochs. On the one hand, a too-high learning rate (η = 1.01) causes the gradient
descent to overshoot the minimum of the loss function. On the other hand, a
too-low learning rate (η = 0.01) causes the gradient descent to converge slowly.

Alternative methods. To enhance the performance of SGD, various
modifications and extensions have been proposed, such as SGD with mo-
mentum [181, 150], RMSProp [75], or Adam [100]. These methods aim
to adjust the learning rate dynamically or dampen the oscillations in the
gradient descent to achieve faster and more stable convergence.

25

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

For instance, SGD with momentum [181, 150] uses a momentum co-
efficient γ and smoothes the variations of the descent direction, thus pre-
venting the optimisation from getting stuck in small local minima. The
momentum term is a moving average of the gradient, here denoted v, and
it is used to update the parameters as shown in equation (2.14). In this
equation, the momentum coefficient γ ∈ [0, 1] is a hyperparameter that is
typically set close to 1, 0.9 being a common value.

vt+1 = γvt + η∇J (θ)
θt+1 = θt − vt+1

(2.14)

2.4 Convolutional Neural Networks for Com-
puter Vision

In the field of computer vision, CNNs have emerged as effective archi-
tectures that enable high performance on image classification tasks. The
effectiveness of CNNs lies in their architecture that leverages the Convo-
lutional (Conv) layers to automatically learn abstract features from visual
data in a hierarchical fashion. In this section, we explore the building
blocks of CNNs and various architectures that have been widely used and
became de facto standards in the literature.

2.4.1 Building Blocks
This section covers the most common building blocks of CNNs for com-
puter vision. These building blocks are organised in layers that are stacked
to form neural network architectures subsequently detailed in sections 2.4.2
and 2.4.3.

Convolutional layer. Conv layers are one of the core building blocks of
CNNs. Each convolution layer performs a series of spatial convolutions on
the input data using a set of learnable filters or kernels. These filters are
designed to extract low-level features such as edges, corners, and textures
in the early layers, while they learn high-level features like object parts or

26

CONTENTS

even whole objects in the deeper layers. Contrary to manual feature en-
gineering, the features learned by Conv layers are learned in a end-to-end
fashion. The 2D convolution operation is defined in equation (2.15) :

Yij =
kh−1∑
a=0

kw−1∑
b=0

Xi−a,j−b ·Kab (2.15)

where X is the input, K is the kernel of size kh× kw and (i, j) are the spa-
tial coordinates in the output feature map. Note that some Deep Learning
frameworks implement cross-correlation instead of convolution. In the for-
mer, the kernel is not spatially flipped leading to the cross-correlation not
being commutative [52]. The Conv layer kernels are typically smaller than
the input along width and height dimensions (they are generally 3×3 [67])
but comprise as much channels as the input. During the forward pass, each
kernel is spatially convolved channel-wise with the input and the convo-
lution outputs are summed along the channel dimension to yield a single
scalar for each kernel position on the input (see also figure 2.4a).

Conv layers are more computationally efficient than Fully Connected
(FC) layers, as they have a form of weight sharing baked in. Indeed, the
same kernel is applied to every location of the input, which brings two
main benefits: (i) the number of parameters is independent of the input
size and (ii) a single learned kernel, acting as a feature detector, can be
used in multiple locations. This is especially useful for early feature de-
tector that detects basic shapes or textures. In addition, because of the
kernels being convolved across the whole input, Conv layers are also less
sensitive to spatial translations that might occur in different instances of
the same class.

Fully connected layer. FC layers, also known as Dense layers are often
the last layers of a CNN, effectively serving as a classifier, whereas the Conv
layers act as a feature extractor. FC layers perform high-level reasoning by
conducting non-linear transformations of the extracted features and com-
bining them to make decisions. In an FC layer, each neuron is connected
to every neuron in the previous layer. A FC layer can be described as a
matrix-vector product as in equation (2.16) (see figure 2.4b).

27

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

y = wT · x + b (2.16)

where x is the input vector, w is the weight matrix and b is the bias.
In the context of CNNs, before passing the output of the last Conv layer
to the first FC layer, it needs to be flattened or reshaped into a single
column vector. The final layer in a CNN is a FC layer that has a num-
ber of neurons equal to the number of output classes, and it typically uses
a softmax activation to output a probability distribution over those classes.

k

k

1
1

Input Feature Map
Output Feature Map

Convolution Kernel

(a) Convolutional Layer

Input Features

Output Features

Neuron

Connection

(b) Fully Connected Layer

Figure 2.4: Conceptual representation of a Convolutional and a Fully Con-
nected layer. The Convolutional layer (figure 2.4a) takes a multi-channel input
and produces a multi-channel output. Each coefficient of the output is com-
puted by applying a convolution operation at a corresponding location in the
input. The Fully Connected layer (figure 2.4b) takes a vector input and pro-
duces a vector output. Each connection is represented by a weight in the weight
matrix.

Activation functions. They are often applied to the output feature map
of a convolutional or fully connected layer, resulting in the activation map
or activations. These functions introduce non-linearity into the model,
allowing it to learn more complex patterns [125]. A common activation
function used in CNNs is the Rectified Linear Unit (ReLU), represented as
f(x) = max(0, x). Other functions like the sigmoid f(x) = 1/(1 + e−x) or
tanh f(x) = (ex−e−x)/(ex +e−x) functions have been used (see figure 2.5),
however, the ReLU is preferred over the latter for its computational effi-
ciency and its ability to mitigate the vanishing or exploding gradient prob-
lem [77, 50].

28

CONTENTS

3 2 1 0 1 2 3
x

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

f(x
)

ReLU
Tanh
Sigmoid

Figure 2.5: ReLU, tanh and sigmoid activation functions. Best viewed in
colours.

Pooling. This operation is often employed after Conv layers in a CNN
and aims at progressively reducing the spatial extent of the input repre-
sentation, thus reducing the number of parameters and computations in
the network. This also helps control overfitting and increases the recep-
tive field of the subsequent layers. The pooling operation is performed
independently on each input channel, so the number of channels remains
unchanged. The two most common types of pooling are max and average
pooling. The former selects the maximum value in each window (often of
size 2 × 2), while the latter computes the average value of the window.
Given an input matrix X, the output matrix Y for a certain spatial loca-
tion (i, j) is defined in equation (2.17) for max pooling and equation (2.18)
for average pooling:

Y max
ij = max

(a,b)∈[0,kh−1]×[0,kw−1]
Xi+a,j+b (2.17)

Y avg
ij = 1

kh × kw

kh−1∑
a=0

kw−1∑
b=0

Xi+a,j+b (2.18)

29

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

where kh and kw represent the height and width of the pooling windows
respectively. Note that pooling has no learnable parameters. It only down-
samples the input based on a fixed function.

Batch Normalisation. Batch Normalisation (BN) is a technique intro-
duced in [90] to combat the issue of internal covariate shift in deep neural
networks, thereby accelerating training and improving generalization. Co-
variate shift refers to the changes in the distribution of features in the
training and test dataset, which can lead to slow convergence, make the
network harder to train or hinder its generalisation capabilities. BN nor-
malises the input of the layer by adjusting and scaling the activations of
the previous one. For each mini-batch of inputs (for instance, the activa-
tion map of the previous layer), it computes the mean and variance of the
activations and performs normalization. The transformation is defined as
follows:

x̂i = xi − µB√
σ2

B + ε
(2.19)

where xi is the input, µB is the mini-batch mean, σ2
B is the mini-batch

variance, and ε is a small constant for numerical stability. After normal-
ization, the method allows the network to learn an affine transformation
for each activation, permitting the network to control the mean and stan-
dard deviation of the input distribution, formalised in equation (2.19):

yi = γx̂i + β (2.20)

where, γ and β are the learnable parameters of the affine transformation.
BN has the advantage of making the network less sensitive to the initial
weights, allowing higher learning rates, and reducing the need for Dropout,
among other regularisers. However, its effectiveness decreases in the case of
small batch sizes, as the estimate of the batch mean and variance becomes
less accurate.

30

CONTENTS

Dropout. Dropout is a regularization technique used to prevent over-
fitting in neural networks. Dropout was introduced in [178] and works
by randomly deactivating a proportion of neurons in a layer during each
training iteration. More specifically, during the forward pass, each neu-
ron has a probability p of being temporarily removed from the network,
effectively breaking up co-adaptations between neurons and forcing them
to learn more robust and independent features. The output of Dropout is
given in equation (2.21):

ri ∼ Bernoulli(1− p), y = x⊙ r
1− p

(2.21)

In the above equation, x denote the output of a layer processed with
dropout, r is a binary mask vector of the same shape as x, where each
element of r is independently drawn from a Bernoulli distribution with
probability 1 − p, leading to ri = 1 if the associated weight is kept and a
ri = 0 if not. The product x ⊙ r is scaled by 1− p to ensure that the ex-
pected value of x remains unchanged. During the evaluation, the dropout
is changed to an identity function.

2.4.2 Architectures Evolution
The evolution of Convolutional Neural Networks is characterised by a con-
sistent increase in their size and performance, alongside the introduction
of new architectural modifications to address the limitations of their pre-
decessors (see figure 2.9). In this section, we present a historical overview
of the CNNs evolution and we subsequently detail the architectures that
we used in our experiments.

One of the earliest CNN was introduced in 1998: LeNet-5 was devel-
oped for digit recognition [106], constituting a relatively simple network
with 5 layers with learnable parameters: 2 Conv layers and 3 fully con-
nected layers. Its size is significantly smaller compared to the contem-
porary models (see figure 2.9). With the introduction of AlexNet [102]
in 2012, the network size considerably grew, comprising more layers and
neurons to handle more complex tasks, like large-scale image recognition.
AlexNet tackled the overfitting issue in LeNet-5 using data augmentation
and dropout techniques, while also introducing and popularising the ReLU

31

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

activation function.

Figure 2.6: Architecture of LeNet-5, a Convolutional Neural Network used for
handwritten digit recognition. Image taken from [106]

The next advancement was the VGG networks family [175] which pro-
posed much deeper architectures with up to 19 layers, which is a significant
increase over the 8 layers of AlexNet. However, the increased depth led
to the vanishing gradient problems, which refers to the situation in train-
ing a deep neural network where gradients are backpropagated through
layers and become increasingly small, effectively preventing the weights of
earlier layers from learning and updating effectively. The VGG networks
also introduced the practice of stacking multiple convolutional layers with
small 3 × 3 filters instead of using larger ones. The same year, Google’s
Inception (or GoogLeNet) [183] was introduced, addressing the vanishing
gradient issue with its novel inception modules, which allowed the network
to learn at varying scales and increased computational efficiency, without
overly increasing the network size. GoogleNet was also the first CNN that
was not a simple stack of layers and processed a single input with different
blocks in parallel before merging them.

Later, the ResNet models family was proposed in [67], which effectively
tackled the vanishing gradient problem by introducing skip (or shortcut)
connections, allowing gradients to backpropagate directly through several
layers. These shortcut connections also allowed the network to grow in
depth up to 152 layers without a significant increase in computational
cost. However, a challenge remained with the constant need for careful de-
sign to manage feature-map sizes. Indeed, stacking numerous layers, with
their channel count increasing with depth, can lead to an explosion in the
number of parameters as well as increased memory consumption.

In response, DenseNet [85] was proposed. It connects each layer to ev-
ery other following layer of the same block in a feed-forward fashion. By

32

CONTENTS

Figure 2.7: Architecture of the VGG16 network introduced in [175]. Image
taken from [39]

+

ReLU

ReLU

X

f(x)

f(x) + x

Skip
Connection

Identity

Conv Layer

Conv Layer

Figure 2.8: A residual block and its skip connection used in ResNets[67]. The
identity skip connection allows for the gradient to be backpropagated directly
through several layers, thus mitigating the vanishing gradient problem.

33

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

reinforcing the propagation of features and gradients through the network,
the DenseNet architecture alleviates the vanishing-gradient problem and
further improves the information flow from earlier layers to later ones by
reusing earlier features in the deeper layers. Thus, through these chronolog-
ical advancements, neural networks not only grew in size but also improved
in performance, thereby becoming more efficient and capable of handling
more complex tasks.

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of FLOP (109)

60

65

70

75

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

AlexNet

VGG19
VGG16

VGG13
VGG11

InceptionV3

GoogLeNet
ResNet-18

ResNet-34

ResNet-50

ResNet-101 ResNet-152

DenseNet-121

DenseNet-161

Size (Millions of parameters)
10M
50M
100M

Type of Architecture
Standard Architectures

Type of Architecture
Standard Architectures

Figure 2.9: Networks size comparison. The x-axis represents the number of
Floating Point Operations (FLOPs) required to process a single image. The y-
axis represents the Top-1 accuracy on the ImageNet [25] dataset and the size of
the circles represents the number of parameters in the network. Numbers are
taken from [154]

2.4.3 Architectures Used in Experiments
In the subsequent paragraphs, we detail the architectures that we used in
our experiments. We chose these architectures because they are represen-
tative of the state-of-the-art in image classification and they are widely
used in the pruning literature. Table 2.1 gives an overview of the different
network architectures.

VGG16. The VGG16 network [175] is a 16-layer CNN composed of 13
Conv layers and 3 fully connected layers. VGG16 was originally designed
for ImageNet [25] and in our experiments with CIFAR-10 and CIFAR-100
(described in section 2.5) we use a slightly modified version of VGG16

34

CONTENTS

Conv2 Conv4 Conv6 VGG16 ResNet20 ResNet18

Number of Parameters 4,301,642 2,425,930 2,262,602 14,728,266 269,034 11,685,608

Number of layers 5 7 9 14 20 18

Number of Conv layers 2 4 6 13 19 17

Number of FC layers 3 3 3 1 1 1

Table 2.1: Number of parameters for the used neural network architectures.
The number of parameters is given for the CIFAR-10 dataset, except for the
ResNet18 architecture, whose number of parameters is given for the TinyIma-
geNet dataset.

where we replace the 3 FC layers with an average pooling layer and a sin-
gle FC layer [120]. The Conv layers filters are of size 3× 3 with a stride of
1. The max-pooling layers are of size 2× 2 with a stride of 2. Each Conv
layer is followed by a ReLU activation function. The VGG16 network is
illustrated in figure 2.10.

Input

Output

Conv 3x3

Conv 3x3

Max Pooling

B1 (no=64)

B1 (no=128)

B2 (no=256)

B2 (no=512)

B2 (no=512)

B1:

no = number of output channels

B2:

Conv 3x3

Conv 3x3

Max Pooling

Conv 3x3

FC 512xC

Avg Pooling

C = number of classes

ReLU

ReLU

ReLU

ReLU

ReLU

Figure 2.10: VGG16 adapted for CIFAR-10 and CIFAR-100.

ResNet{18,20}. The ResNet18 and ResNet20 networks [67] are 18 and
20-layer CNNs respectively. These layers are organized into stages, with
ResNet18, represented in figure 2.11b, consisting of 4 stages with 2 Basic
Blocks (detailed subsequently), while ResNet20, represented in figure 2.11a,
is structured into 3 stages, each containing 3 Basic Blocks. The Basic

35

2.5. DATASETS

Blocks, also referred to as Residual Blocks, are composed of Conv layers
(see figures 2.11a and 2.11b) and follow the principle of learning the resid-
ual function:

f(x) = h(x)− x (2.22)

where h(x) is the mapping usually learned by previous architectures such as
VGG16. The representation of a residual block is given by equation (2.23)
(see also figure 2.8):

y = f(x, θ) + x (2.23)

where x is the input, f represents the residual function, θ are the weights
of the block, and y is the output. In equation (2.23) +x denotes the skip
connection, which enables direct backpropagation of the gradient to earlier
layers.

Conv{2,4,6}. Conv2, Conv4 and Conv6 are shrunk down versions of the
VGG16 network architecture, composed of 2, 4 and 6 Conv layers respec-
tively and 3 FC layers. Although Conv2, Conv4 and Conv6, introduced by
Frankle and Carbin in [43], are not widely featured in existing literature,
we chose to employ them due to their use in the methods we benchmark
against. The Conv layers are stacked in increasing depth, and their convo-
lutional filters are of size 3× 3 with a stride of 1. The max-pooling layers
are of size 2× 2 with a stride of 2. They are represented in figure 2.12.

2.5 Datasets
In this thesis, we focus on image classification and supervised learning, a
machine learning paradigm in which the model is trained using labelled
data. In the context of image classification, the labelled data are pairs of
images and labels which represent the class of their associated image. We
denote an input image X and its corresponding label y. Each image X

36

CONTENTS

Conv 3x3

Conv 3x3

Max Pooling

B:

ReLU

BatchNorm

BatchNorm

+
ReLU

B

B

S:

B

S (no=16)

S (no=32)

S (no=64)

Conv 3x3

BatchNorm

ReLU

Avg Pooling

FC 64xC

Input

Output

no = number of output channels

C = number of classes
B = basic block

S = stage

(a) ResNet20

Conv 3x3

Conv 3x3

Max Pooling

B1:

ReLU

BatchNorm

BatchNorm

+
ReLU

B2

B1

SP:

 SI (no=64)

SP (no=128)

SP (no=256)

Conv 7x7

BatchNorm

ReLU

Avg Pooling

FC 512xC

Input

Output

no = number of output channels

C = number of classes
B = basic block

S = stage

Conv 3x3

Conv 3x3

Max Pooling

B2:

ReLU

BatchNorm

BatchNorm

+
ReLU

Conv 1x1

BatchNorm

Max Pooling

SP (no=512)

B1

B1

SI:

(b) ResNet18

Figure 2.11: ResNet20 and ResNet18 architectures. ResNet20 (figure 2.11a)
is tailored for CIFAR-10 and comprises 3 stages encompassing 3 Basic Blocks of
2 Conv layers each, with an identity skip connection in each block. ResNet18
(figure 2.11b) is tailored for ImageNet and is composed of 4 stages encompassing
4 Basic Blocks of 2 convolutional layers each. There are two types of blocks: BI
with an identity skip connection and BP with a projection skip connection. The
projection skip connection is used to match the dimensions between the input
and the output of the block.

37

2.5. DATASETS

Input

Output

B (no=64)

no = number of output channels

Max Pooling

FC Fx256

C = number of classes

FC 256

FC 256xC F = number of flatened features

Conv 3x3

Conv 3x3

B:

ReLU

ReLU

Input

Output

B (no=64)

B (no=128)

Max Pooling

FC Fx256

FC 256

FC 256xC

Input

Output

B (no=64)

B (no=128)

B (no=256)

Max Pooling

FC Fx256

FC 256

FC 256xC

Conv2 Conv4 Conv6

Figure 2.12: Conv2, Conv4 and Conv6 architectures. The number of flat
features F corresponds to the size of the feature map of the last block B, once
vectorised. F = 16384, 8192 and 4096 for Conv2, Conv4 and Conv6, respectively
for input images of size 32× 32.

belongs to the set of all images of the dataset X , and each label y belongs
to the set of all labels of the dataset Y . The ensemble of the image-label
pairs are gathered in a dataset, denoted D, which is formally a set of pairs
(X, y), where X ∈ X and y ∈ Y , so that D ⊂ X × Y .

Following these formal notations, the subsequent sections give details
about the datasets used in our experiments. We evaluated our methods on
three different datasets tailored for image classification: CIFAR-10 [162],
CIFAR-100 [162] and TinyImageNet [104]. The following paragraphs give
details about these datasets and table 2.2 sums up their main characteris-
tics.

Dataset Number of images Number of classes Image size Size of test set

CIFAR-10 60,000 10 32x32 10,000

CIFAR-100 60,000 100 32x32 10,000

TinyImageNet 100,000 200 64x64 10,000

Table 2.2: The number of images, of classes, image size and size of the test set
for the three datasets used: CIFAR-10, CIFAR-100 and TinyImageNet.

38

CONTENTS

2.5.1 CIFAR-10
CIFAR-10 [162] is a widely used dataset in machine learning and computer
vision. This is a labelled subset of the 80 Million Tiny Images dataset
[190]. CIFAR-10 is a simple yet challenging dataset that allows for quicker
iteration or hyperparameter tuning than larger datasets such as ImageNet
[170], but it is significantly more complex than the MNIST dataset [26],
which contains grayscale handwritten digits images. The CIFAR-10 data-
set contains 60,000 colour images of size 32x32 pixels, split into 10 classes,
namely: plane, car, bird, cat, deer, dog, horse, ship, and truck. Each class
contains 6,000 images. The dataset is divided into two subsets: a train-
ing set, composed of 50,000 images and a test set containing 10,000 of them.

Figure 2.13: A sample of images from CIFAR-10. Each row contains images
from one of the 10 classes: plane, car, bird, cat, deer, dog, frog, horse, ship, and
truck

2.5.2 CIFAR-100
CIFAR-100 [162] is a more challenging version of CIFAR-10. Like the lat-
ter, it is a labelled subset of the 80 Millions Tiny Images and is composed

39

2.5. DATASETS

of 60,000 colour images of size 32x32 pixels. However, instead of 10 classes,
CIFAR-100 contains 100 classes of 600 images each. As a result, each class
has far fewer images than in CIFAR-10. CIFAR-100 is also divided into
two sets: a training and a test set, composed of 50,000 and 10,000 images
respectively.

Figure 2.14: A sample of images from CIFAR-100. Each image represents an
instance of one of the 100 distinct classes.

2.5.3 TinyImageNet

TinyImageNet is another popular dataset in machine learning and com-
puter vision, conceived as a subset of the larger ImageNet dataset [170]. It
comprises 100,000 colour images of size 64x64 pixels, split into 200 classes,
whereas ImageNet contains 1.2 million images of size 256x256 pixels, split
into 1,000 classes. The dataset is divided in 3 sets: the train set, which
contains 500 images per class, the validation and test sets, which both con-
tain 50 images. The scaled-down image size and the reduced number of
images make TinyImageNet more computationally manageable than Ima-

40

CONTENTS

geNet while still being challenging by offering diversity in the image classes.

Figure 2.15: A sample of images from the Tiny ImageNet dataset. Each image
represents an instance of one of the 200 distinct classes.

2.5.4 Train, Validation and Test Sets
In our experiments, for each dataset, we use 3 distinct sets for training,
validation and testing. The training set serves to tune the weights of the
model, while the validation set is used to monitor the evolution of the
performance metric on unseen data throughout the training. The valida-
tion metric provides the necessary triggers for the early stopping policy
(i.e. interrupting the training prematurely if the validation metrics do not
change over a given number of iterations). The test set, on the other hand,
is used to evaluate the model’s performance on entirely new data and to
report the final test accuracy. When utilizing datasets like CIFAR-10 and
CIFAR-100, only training and testing sets are available. For these datasets,
we split the given train set using the following proportions: 90% is used
for training the network and the remaining 10% is for validation. On the
other hand, the TinyImageNet dataset does provide training, validation,
and testing sets, but the test set lacks annotations. Hence, we use 90%
of the original training set for model training and the remaining 10% for
validation. Instead of the original unannotated test set, we repurpose the
original validation set to serve as the test set. This is a common strategy
employed by other implementations [203, 195, 194].

41

2.5. DATASETS

42

Chapter 3

Deep Neural Network
Compression

43

44

Contents
3.1 Introduction . 45
3.2 Accelerating Computation in Neural Networks 47

3.2.1 Fast Fourier Transform 47
3.2.2 Optimised Matrix Multiplication Algorithms 48
3.2.3 Leveraging Matrix Structures 49
3.2.4 Practical Applications and Limitations 51

3.3 Teaching Paradigm . 51
3.3.1 Knowledge Distillation 51
3.3.2 Feature-Map Matching 52
3.3.3 Deep Mutual Learning 53
3.3.4 Teacher Assistant 53
3.3.5 Alternative Distillation Losses 54

3.4 Architecture Design . 55
3.4.1 Building Blocks for Efficient Architecture Design . 56
3.4.2 Automatic Architecture Design Through Neural Ar-

chitecture Search 61
3.5 Compressing and Optimising an Existing Architecture . . . 65

3.5.1 Lower Precision Weights and Activations Represen-
tation . 66

3.5.2 Removing Weights and Connections 68
3.6 Positioning . 76
3.7 Conclusion . 77

3.1 Introduction
The fast development of neural networks has led, on the one hand, to
the enhancement of their performance, but also, on the other hand, to a
significant growth in size and parameter count. The rapid evolution and
adoption of these networks has given rise to various applications [102, 12,
174, 95], particularly embedded ones[99, 103], whose resources are highly

45

3.1. INTRODUCTION

constrained in terms of computing power, energy consumption and memory
footprint. Alongside the increase in the size of these networks, compression
techniques [105, 60, 59] have been devised, in order to enable the use of
these algorithms in embedded applications or resource-constrained envi-
ronments.

This chapter focuses on state-of-the-art neural network compression
methods, predominantly based on various operations applied to the weights
of an already existing large neural network. This chapter is organised as
follows: Section 3.2 examines fast convolution techniques, which aim to
accelerate the computation of convolutions in neural networks, thereby
reducing both the runtime and computational resources required. There-
after, section 3.3 delves into Knowledge Distillation (KD), a process by
which the knowledge of a larger, more complex network (referred to as
the teacher) is transferred to a smaller and more efficient network (called
the student), enabling the latter to achieve comparable performance with
a reduced footprint. Subsequently, section 3.4 explores architecture de-
sign methods that aim at producing more efficient and effective networks.
Section 3.4.1 details ad-hoc architectures, referred to as Efficient Architec-
tures. These architectures are lightweight networks that revolve around a
core technique to reduce their size while preserving performance as much
as possible. Hence, section 3.4.2 discusses NAS, a method that automates
the discovery of optimal network architectures tailored to specific tasks
or constraints, potentially leading to more compact and efficient designs.
Afterwards, section 3.5 presents two categories of techniques that harness
an existing neural network and refine its architecture to produce a more
compact and efficient model. First, section 3.5.1 focuses on quantisation
and binarisation techniques, which aim to lower the numerical precision
of weights and activations of networks in order to speed up their compu-
tation and reduce their memory footprint. Lastly, section 3.5.2 considers
neural network pruning, which seeks to remove redundant or insignificant
connections and weights from networks, resulting in sparser and more com-
putationally efficient models.

46

CONTENTS

3.2 Accelerating Computation in Neural Net-
works

Among various operations and functions used in neural networks, two fun-
damental mathematical operations, convolution and matrix multiplication
are used extensively and are the backbone of most computations in neu-
ral networks. However, performing these operations can be computation-
ally demanding, particularly with large and complex networks. This may
lead to long and heavy computations, posing a challenge for real-time or
resource-limited applications. To mitigate this issue, some research ef-
forts have focused on developing techniques to speed up these operations.
These strategies encompass optimizing the underlying algorithms to lever-
aging hardware acceleration, with the objective of enhancing the speed and
efficiency of neural network computations.

3.2.1 Fast Fourier Transform
The most popular algorithms for accelerating convolution operations rely
on the FFT [18, 116, 151], and leverage the Convolution Theorem. The
Convolution Theorem states that the convolution of two signals in the
source domain is the product of the two signals in the Fourier domain, as
shown in equation (3.1):

F (x ∗ y) = F (x) · F (y) (3.1)

where x and y are the two signals in the source domain, x ∗ y is the con-
volution of x and y and finally F (x) and F (y) are the Fourier transforms
of x and y, respectively. Then, to obtain the result of the convolution in
the source domain, the inverse Fourier transform, denoted F−1, is applied
as follows:

x ∗ y = F−1(F (x) · F (y)) (3.2)

47

3.2. ACCELERATING COMPUTATION IN NEURAL NETWORKS

The convolution theorem allows for faster computation of the 2D convolu-
tion by using the FFT to compute the convolution in the frequency domain,
and the inverse FFT to convert the result back to the source domain [144].

3.2.2 Optimised Matrix Multiplication Algorithms

It is possible to accelerate matrix multiplication by directly optimising
the underlying algorithm. The Strassen algorithm [180], used in [19], is a
fast method for matrix multiplication that reduces the computational com-
plexity from the standard O(n3) to approximately O(n2.807) by recursively
dividing the matrices of size n into 4 submatrices of size n

2×
n
2 , reorganising

and combining these multiplications to perform only 7 instead of 8 matrix
multiplications (see equations (3.5) and (3.6)).

Considering a matrix multiplication of two square matrices A and B of
size 2n with n ∈ N, defined in equation (3.3), the output of the standard
bloc matrix multiplication, referred to as C, is defined in equation (3.4).
Note that Aij and Bij are either a scalar if n = 1, or a matrix of size n

2 ×
n
2 .

A =

A11 A12

A21 A22

 , B =

B11 B12

B21 B22

 (3.3)

The computation of C requires 8 matrix multiplications, as shown in equa-
tion (3.4).

C = A ·B =

A11B11 + A12B21 A11B12 + A12B22

A21B11 + A22B21 A21B12 + A22B22

 (3.4)

The Strassen algorithm reduces the number of multiplications to 7 by defin-
ing the following 7 products, referred to as Pi, with i ∈ J1; 7K:

48

CONTENTS

P1 = (A11 + A22)(B11 + B22)
P2 = (A21 + A22)B11

P3 = A11(B12 −B22)
P4 = A22(B21 −B11)
P5 = (A11 + A12)B22

P6 = (A21 − A11)(B11 + B12)
P7 = (A12 − A22)(B21 + B22)

(3.5)

The result of the matrix multiplication is then obtained by combining these
products, as shown in equation (3.6).

C =

P1 + P4 − P5 + P7 P3 + P5

P2 + P4 P1 − P2 + P3 + P6

 (3.6)

The Strassen algorithm has later been refined by Coppersmith and Wino-
grad, who introduced the Coppersmith-Winograd algorithm [20]. The lat-
ter brings down the complexity to O(n2.376). This algorithm is used in var-
ious works, mostly targeted towards a specific Field Programmable Gate
Array (FPGA) processor [122, 129, 197].

3.2.3 Leveraging Matrix Structures

Using a particular matrix structure also speeds up the standard opera-
tions used in a neural network. Fully connected layers can be effectively
accelerated by forcing the use of specific matrix structures. For instance,
Cheng et al. devised a method where dense layers standard operation is
replaced by a circulant projection [15]. The circulant matrix can be stored
in a memory-efficient way and can be further sped up with FFT. C is an
example of a circulant matrix (see equation (3.7)).

49

3.2. ACCELERATING COMPUTATION IN NEURAL NETWORKS

C =



a b c d

d a b c

c d a b

b c d a


T =



a b c d

e a b c

f e a b

g f e a


(3.7)

Likewise, convolutional operations can be accelerated thanks to Toeplitz
matrices. A Toeplitz matrix, or diagonal-constant matrix, has the unique
characteristic of each descending diagonal from left to right being constant.
T is an example of a Toeplitz matrix (see equation (3.7)). This property
is particularly useful for convolutions, as they can be expressed as a mul-
tiplication by a Toeplitz matrix [54], as shown in equation (3.8). This
algorithm has been used in [114], focusing on FPGA architectures. Note
that the representation of convolution as a product with a Toeplitz matrix
can further be accelerated by using the aforementioned optimisations to
the matrix multiplication algorithm, such as the Strassen or Coppersmith-
Winograd algorithm.

Let x be a signal of length N and h be a kernel of length M , expressed
as a Toeplitz matrix H. The convolution of x and h can be expressed as:

h ∗ x = Hx =



h0 0 · · · 0

h1 h0 · · · 0
...

hM−1 hM−2 · · · h0

0 hM−1 · · · h1
...

0 0 · · · hM−1





x0

x1
...

xN−1


(3.8)

50

CONTENTS

3.2.4 Practical Applications and Limitations

The algorithms presented in sections 3.2.1 to 3.2.3 offer significant accel-
eration in the computation of convolution operations and are widely im-
plemented and used in state-of-the-art software [154, 1]. In particular, the
Coppersmith-Winograd algorithm is used in various Deep Learning frame-
works [1, 147] or neural network GPU libraries [21] where the fastest algo-
rithm is automatically selected based on the tensor sizes and the hardware.
However, depending on the operand size, the total processing speed can be
bound to the hardware and more specifically, to the memory throughput
and data access speed, more than the computation time [200, 31].

3.3 Teaching Paradigm
The teaching paradigm embraces a class method that aims to transfer
the knowledge of a large, complex and accurate network, referred to as
the teacher, to a smaller and more efficient one called the student. The
student is trained with a combination of the main task loss as well as a
supplementary supervision signal which is derived from the feature maps
of the teacher network at various depths.

3.3.1 Knowledge Distillation

Methods in the teaching paradigm are mostly based on the seminal work
of Hinton et al. [74], better known as Knowledge Distillation (KD). The
latter seeks to train simple networks with KD yielding better performances
compared to those trained from scratch. KD relies on teacher and student
networks, where the logits of the former are used as an additional super-
vision signal for the latter. When trained separately, the student network
can only rely on classification labels in order to learn its own data represen-
tation while KD relies on the logits of the trained teacher network which
provide more insight about the latent data representation.

For a classification problem, the loss used to train the student network
with KD can be expressed as:

51

3.3. TEACHING PARADIGM

Ltotal = LCE(ŷs, y)︸ ︷︷ ︸
Task loss

+λ
T 2

2 LCE

(
ŷs

T
,
ŷt

T

)
︸ ︷︷ ︸
Distillation loss

(3.9)

where LCE is the cross-entropy loss, ŷs and ŷt are the logits of the stu-
dent and teacher networks respectively, y is the ground truth label, T is
the temperature parameter and λ is a mixing coefficient balancing the two
losses. Note that the distillation loss is scaled by T 2

2 to ensure that the
relative contribution of the task loss and distillation loss stays balanced if
the temperature changes.

3.3.2 Feature-Map Matching
Inspired by KD, [165] introduced FitNet, a two-stage training algorithm,
where an intermediate layer of the teacher is chosen as a hint1 for an in-
termediate layer of the student. Initially, the first layers of the student are
trained to mimic the hint feature map. Then, the whole student network
is trained with standard KD against the whole teacher. In the first step,
a regressor is needed in order to adapt the dimensions of the feature map,
which may differ from the teacher to the student networks, as illustrated in
figure 3.1. Yim et al. argue that the direct feature map matching utilised
by FitNets is overly restrictive. Drawing inspiration from the techniques
used in [48] for style transfer, they propose an alternative method. In the
context of style transfer, the Gram matrix of the feature maps is employed
to encapsulate the texture information of an image. Adapting this ap-
proach, the method presented in [206] calculates the Gram matrix across
the feature maps of multiple layers. This computed Gram matrix, dubbed
as the Flow of Solution Procedure matrix, then serves as a hint for the
student network, guiding its training process. In practice, handling full-
dimensional feature maps is cumbersome. That is why, in order to avoid
this issue, [209] use an attention map generated by squashing the feature
maps to a 2D map allowing for a smaller 2D regressor to match attention
map dimensions.

1Hint is the terminology used by Romero et al. [165] to denote a feature map used as
a target for the student network.

52

CONTENTS

Softmax Layer

Sofmax Layer

Predictions

Predictions
Softmax Layer
modified temperature

Knowledge
Distillation Loss

FitNet Loss Regressor
size matching

Attention
squashing along

channel dimension

Attention
squashing along

channel dimension

Regressor
size matching

Attention
Transfer Loss

Teacher Network Student Network

Softmax Layer
modified temperature

A Teacher
Assistant can be
added in between

For Deep Mutual Learning the
Teacher Network is also a

Student Network. (There can
be more than two networks)

Figure 3.1: Overview of various knowledge distillation frameworks. From top
to bottom, left to right: Deep Mutual Learning [212], FitNet [165], Attention
Transfer [209], Teacher Assistant [137] and Knowledge Distillation [74].

3.3.3 Deep Mutual Learning
Note that the aforementioned knowledge transfer methods require teacher-
student pairs and assume that teachers are large trained models. [212]
relax this assumption by proposing Deep Mutual Learning, which enables
a pool of networks of different architectures to learn together, provided
that they have the same logit dimensions, and none of the models in the
pool requires a pretraining step. The uncertainty of each model is distilled
into each other, which creates additional knowledge.

3.3.4 Teacher Assistant
In all the aforementioned methods, the efficacy of knowledge distillation,
and consequently, the final performance of the student network, is signifi-
cantly influenced by the disparity in size between the student and teacher
networks. This size discrepancy, when excessive, may cause the student
network to encounter difficulties in aligning with the teacher logits, thus
preventing optimal knowledge distillation. To tackle this issue, Mirzadeh
et al. introduced the concept of Teacher Assistant: networks of intermedi-
ary dimensions aiming at bridging the size gap between student and teacher

53

3.3. TEACHING PARADIGM

[137]. The Teacher Assistant (TA) approach proposes to ensure effective
knowledge transfer through a stepwise transfer of knowledge, starting from
the teacher to the TA, and finally from the TA to the student. This tech-
nique allows each model to learn from a slightly simpler model than itself.
Empirical evidence shows that the TA approach tends to outperform tra-
ditional one-step distillation in various experiments and across different
network architectures, resulting in improved performances. However, it is
important to note that it does introduce additional computational overhead
due to the necessity of additional training steps for the TA, and careful
selection of the size and number of TAs. These considerations underscore
that while the TA strategy is effective in managing the size disparity prob-
lem, it also adds complexity to the distillation process.

Teacher Student

T2

T1

T0

S1

S2

S0

image

label

Mutual
Information

main task
loss

estimation
knowledge

Mutual
Information

Figure 3.2: Conceptual scheme of [2]. The student network efficiently learns
the main task while retaining high mutual information with the teacher network.
The mutual information is maximised by learning to estimate the distribution
of the activations in the teacher network, provoking the transfer of knowledge.
Adapted from the original scheme found in [2].

3.3.5 Alternative Distillation Losses
Other approaches that do not rely on direct feature map or logit matching
have been proposed. [2] introduced Variational Information Distillation,
which indirectly maximises the mutual information between the student
and the teacher. This is done by using variational information maximi-
sation [8] to maximise a variational lower bound of the mutual informa-

54

CONTENTS

tion, since directly maximising the latter is intractable in practice (see
figure 3.2). Likewise, [146] proposed a Probabilistic Knowledge Transfer
method that does not match logits or feature maps, but rather represents
the latter as a probability distribution and minimises divergence between
the two (see figure 3.3).

Figure 3.3: Conceptual scheme of the Probabilistic Knowledge Transfer me-
thod. Both the student and the teacher feature maps are modelled using proba-
bility distributions. The divergence of the latter is minimised in order to transfer
knowledge from the teacher to the student. Illustration taken from [146].

3.4 Architecture Design
The architectural design of neural networks, while contributing signifi-
cantly to their performance, often inflates their computational and memory
requirements. This increased complexity, although beneficial for the final
performance, could limit the deployment of these networks in resource-
constrained environments. Thus, formulating effective and efficient neural
network architectures is of significant importance. The design of neural
networks is a problem that not only involves designing suitable building
blocks but also determining their organization and interconnections. This
section scrutinizes these aspects by focusing on handmade and automatic
efficient architecture design.

Section 3.4.1 introduces building blocks to design efficient architectures.
These building blocks have been meticulously engineered in the state-of-
the-art to strike a balance between computational efficiency and perfor-
mance. Properly incorporating these blocks can result in architectures
better suited to their operating environments, enhancing efficiency while
maintaining the desired level of performance.

Thereafter, section 3.4.2 delves into the field of Neural Architecture
Search. The primary aim of NAS is to design, in an automatic fashion,

55

3.4. ARCHITECTURE DESIGN

network architectures that demonstrate a high level of efficiency and per-
formance for a given task. By doing so, it eliminates the need for manual
design and the associated iterative trial-and-error approaches that would
otherwise be necessary to assess and evaluate the impact and effectiveness
of each design decision [79, 171, 80]. Although NAS was not initially tar-
geted at generating lightweight architectures, the principles and methods
described in this section can be adapted to optimise the architecture search
for efficiency and compactness.

This section explores techniques aimed at the creation of efficient and
effective neural networks through the careful selection and assembly of op-
timised building blocks. The organization of these components plays an
important role in network compression and optimization, highlighting that
high performance can also be reached with designs that are less resource-
demanding.

3.4.1 Building Blocks for Efficient Architecture Design

Depthwise Separable Convolutions. One of the initial strategies to-
wards achieving efficiency in neural network architectures is the use of
depthwise separable convolutions. This technique, used in MobileNet [81]
and EfficientNet [184], separates the standard convolution operation into
two distinct steps: a depthwise convolution and a pointwise convolution
(see figure 3.4). By decomposing the operations in this manner, the com-
putational complexity is markedly reduced while still retaining the ability
to capture spatial and channel-wise information. Consider an input feature
map with Cin channels of arbitrary width and height and Cout convolution
kernels of size k × k × Cin. A standard convolution algorithm will need
Cin × Cout × k × k Multiply-Accumulate (MAC) operations to produce a
1 × 1 × Cout element of the output feature map. In contrast, a depthwise
separable convolution algorithm will first apply a k × k × 1 convolution
kernel to the Cin channels and then perform Cout pointwise convolutions
with 1×1×Cin kernels to produce the same 1×1×Cout element. This effec-
tively reduces the number of parameters to Cin× (Cout + k×k), essentially
reducing the number of computations required to produce a 1 × 1 × Cout
element by a factor of

56

CONTENTS

Cout × k × k

Cout + k × k
.

W'

H'

Cout

. . .

W

H

Cin
k

k Cin

Cout

(a) Standard Convolution

W'

H'

Cout

W

H

Cin

. . .

1

W

H

Cin

k

Cout

k

Cin
Cin1

(b) Depthwise Separable Convolution

Figure 3.4: Illustration schemes of the standard and depthwise separable con-
volution. The standard convolution uses Cout kernels of size k × k × Cin. The
depthwise separable convolution is split into two steps: (i) a convolution with
Cin kernels of size k×k and (ii) a convolution with Cout kernels of size 1×1×Cin.
Best viewed in colours.

Fire Module. An alternative approach for designing efficient architec-
tures involves the integration of fire modules, as proposed in [89]. These
modules, represented in figure 3.5, aim to minimise computational require-
ments by employing two distinct strategies: (i) diminishing the number of
input channels supplied to the following conventional k×k convolutions and
(ii) substituting a portion of the resource-intensive k×k convolutions with
pointwise convolutions, which possess k2 times fewer parameters. The ini-
tial strategy is applied within the Squeeze Layer of the fire module, which
decreases the number of input channels delivered to the Expand Layer,
subsequently reducing the number of parameters in the Expand Layer ker-
nels. The second strategy is implemented in the Expand Layer, where
some 3 × 3 convolutions are replaced with 1 × 1 variants. Although the
1 × 1 convolutions capture less spatial information, they are significantly

57

3.4. ARCHITECTURE DESIGN

less computationally demanding than the 3× 3 ones.

C'<CC

. . .

. . .
. . .

3
3

1
1

1
1

Squeeze Layer
(pointwise convolution)

Expand Layer
(mix of 1x1 ans 3x3 convolutions)

C'

Figure 3.5: Illustration scheme of the fire module. The fire module is com-
posed of a squeeze layer (pointwise convolution designed to reduce the number
of channels fed to the following layer) and an expand layer (convolution with
mixed 1×1 and 3×3 kernels. The 1×1 kernels replace some of the 3×3 kernels,
being less computationally intensive.). Best viewed in colours.

ShuffleNet. Pushing the concept of depthwise separable convolutions
further, [211] introduces pointwise group convolutions and channel shuf-
fle operations to enhance efficiency while maintaining accuracy. Pointwise
group convolutions were initially introduced in [102], though their origi-
nal purpose was not for compression. Instead, group convolutions in [102]
were used to enable distributed training across multiple GPUs with lim-
ited memory. However, ShuffleNet [211] leverages this concept for network
efficiency by dividing the input channels into groups and performing con-
volutions on each group independently. This approach reduces the number
of operations and the computational cost compared to traditional convo-
lutions. To counteract the potential loss of expressive power caused by the
separation of channels into groups, ShuffleNet incorporates channel shuffle
operations as shown in figure 3.6. This technique allows for information ex-
change between groups, effectively maintaining accuracy by ensuring that
different groups can capture diverse features in the input.

Learned group convolutions. Following ShuffleNet, CondenseNet was
introduced in [86], incorporating learned group convolutions to further en-
hance efficiency. Unlike the predefined group convolutions in ShuffleNet,
CondenseNet learns which channels should be grouped together, enabling
the network to adapt its structure for a specific task. This results in bet-
ter utilisation of network capacity and reduces redundancy. CondenseNet
leverages the DenseNet architecture [85] to further improve performance.
Thanks to the densely connected architecture, features discarded in any

58

CONTENTS

. . .

Groupped
Convolution

Channel
Shuffling

Figure 3.6: Illustration scheme of grouped convolution with channel shuffling.
Each filter only acts on a subset of the input tensor (here represented by a
matching colour). The channels of the yielded tensor are shuffled to ensure the
subsequent groups can access information from all the previous groups. Best
viewed in colours.

layer can still be recovered in subsequent ones.

Channel
Split

1x1 Conv 3x3
DWConv 1x1 Conv

Concat Channel
Shuffle

BN ReLU

BN ReLU

BN

Figure 3.7: Illustration scheme of the path taken by the feature maps after the
channel split block. Adapted from the original scheme found in [131].

ShuffleNetV2. Building on the success of ShuffleNet, ShuffleNetV2 was
introduced in [131], focusing on enhancing network efficiency through the
combination of strided convolution and channel split. Strided convolution
helps to reduce the spatial extent of feature maps, thereby reducing the
computation cost. The Channel Split technique efficiently processes the
input feature maps while maintaining the expressive power of the archi-
tecture. Channel Split works by dividing the input feature maps into two
equal parts. One part is passed through the main branch of the ShuffleNet
unit, while the other part is sent through the identity branch, which leaves
its input unchanged. In the main branch, a sequence of pointwise and 3×3
convolutions are performed. After both the main branch and the identity
branch complete their respective operations, the two parts are concate-
nated along the channel dimension and the channels are shuffled. Finally,
the output feature maps are passed to the next ShuffleNet unit in the net-
work. This process is represented in figure 3.7. This approach balances
computational efficiency with the expressive capacity of the model.

59

3.4. ARCHITECTURE DESIGN

Inverted residual and Linear bottlenecks. Depthwise Separable Con-
volutions were employed in MobileNet [81]. Sandler et al. introduced skip
connections and residual blocks into the MobileNetV2 architecture [171],
initially proposed in [67]. They also introduced the concept of inverted
residuals and linear bottlenecks. In conventional residual blocks, the in-
put is first compressed, then expanded, and finally compressed again after
being added to the original input. With inverted residual bottlenecks,
on the other hand, this process is reversed: the input is first expanded,
then a depthwise separable convolution is applied, and finally, it is com-
pressed again. In this architecture, the skip connections link the feature
maps of smaller size, instead of the larger ones. This allows for a more
memory-efficient architecture. The standard residual blocks and the in-
verted residual blocks are shown in figure 3.8. The linear bottlenecks, on
the other hand, are convolutions with a linear activation function. This
takes advantage of the property that high-dimensional feature maps can be
embedded in a lower-dimensional manifold. To do this, it is necessary to
use linear transformations since non-linear ones could potentially destroy
information as reported in [171, 58].

(a) Standard Residual Block

1

Relu6, Dwise Relu6, 1x1
3x3

+

(b) Inverted Residual Block

Figure 3.8: Illustration scheme of the residual block and the inverted residual
block. Note that on the inverted residual block, the feature maps with the lower
number of channels are the ones connected via the skip connection, whereas it
is the opposite on the standard residual block. Diagonally hatched layers do not
use non-linearities. The grey colour indicates the beginning of the next block.
Both illustrations are taken from [29]. Best viewed in colours.

Squeeze-and-Excitation modules. Advancing from MobileNet and
MobileNetV2, its third version [80] incorporated Squeeze-and-Excitation
modules initially introduced in [83]. These modules adaptively recali-
brate channel-wise feature responses, amplifying important features and
suppressing less relevant ones. The Squeeze-and-Excitation module (rep-
resented in figure 3.9) performs squeeze and excitation operations. The
squeeze operation uses global average pooling to create a channel descrip-

60

CONTENTS

tor that summarises the spatial information for each channel. The excita-
tion operation uses this descriptor to learn non-linear interactions between
channels through two fully connected layers. The outputs of this mini-
network are per-channel modulation weights that recalibrate the original
feature maps, scaling or "exciting" them by these weights.

X

Global Average
Pooling
(squeeze)

2 Layer FC
Network

Multiplication
(excitation)

Figure 3.9: Illustration scheme of the Squeeze-and-Excitation module. The
original feature map is squeezed into a channel descriptor through global average
pooling. This descriptor is then used to learn the interdependencies between
the channels through two fully connected layers. The output is then multiplied
layerwise with the original feature map (excitation). Best viewed in colours.

The architectures we reviewed in this section revolve around specific key
techniques such as depthwise separable convolutions, fire modules, chan-
nel shuffling, and Squeeze-and-Excitation modules, among others. These
architectures, while highly efficient, are manually crafted and require a
significant degree of human expertise, intuition, and time to develop, opti-
mise, and fine-tune. The manual design of these architectures often relies
on a deep understanding of the tasks at hand, the data they will pro-
cess, and the constraints of the environment in which they will operate.
However, the process of designing these efficient architectures can be auto-
mated, which is the subject of the next section. Sizes and performance of
network architectures detailed in this section can be compared to standard
architecture sizes in figure 3.10.

3.4.2 Automatic Architecture Design Through Neural Ar-
chitecture Search

Neural Architecture Search (NAS) is a method that automates the discov-
ery of neural network architectures, potentially leading to more compact,

61

3.4. ARCHITECTURE DESIGN

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of FLOP (109)

60

65

70

75

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

AlexNet

VGG19
VGG16

VGG13
VGG11

InceptionV3

GoogLeNet
ResNet-18

ResNet-34

ResNet-50

ResNet-101 ResNet-152

DenseNet-121

DenseNet-161

MobileNetV1
MobileNetV2

MobileNetV3

SqueezeNet

ShuffleNetV1

ShuffleNetV2

Size (Millions of parameters)
10M
50M
100M

Type of Architecture
Standard Architectures
Efficient Architectures

Type of Architecture
Standard Architectures
Efficient Architectures

Figure 3.10: Figure 2.9 updated with the size and performance of the efficient
architectures detailed in section 3.4.1. Best viewed in colours.

efficient designs and reducing the need for manual intervention. Although
NAS might not explicitly aim at producing lightweight architectures, it can
still yield designs that strike a good balance between performance and com-
putational cost [185, 184]. By using automated methods to search for opti-
mal architectures, it is possible to further enhance the efficiency of neural
networks, opening up new possibilities for their deployment in resource-
constrained environments. NAS has emerged as an essential paradigm,
aiming to automate the traditionally manual and labour-intensive process
of designing efficient neural networks [136]. Early network architectures
were indeed entirely handcrafted, requiring significant human effort and
expertise. However, these manual methods are being replaced by NAS
techniques, which seek to automatically determine the optimal network
structure given a training set [201, 38].

The performance and efficiency of NAS are fundamentally determined
by two key aspects: the search space and the search strategy. The search
space, as the name implies, defines the set of all possible architectures that
can be discovered by the NAS algorithm. It could be as broad as all possible
configurations of a certain type of network, such as CNNs, or as narrow as
different arrangements of a specific set of layers [118]. The search strategy,
on the other hand, determines how the NAS algorithm navigates through
this search space in order to optimise its given objective. This could in-
volve gradient-based strategies [119, 204], or stochastic methods, such as

62

CONTENTS

evolutionary algorithms and reinforcement learning [219, 158]. The choice
of search space and search strategy significantly influences the ability of
NAS to discover effective and efficient architectures and is thus a critical
aspect of NAS research. In the following paragraphs, we will delve deeper
into some of the major strategies and their impact on the field of NAS.

Search space. The search space is a critical aspect of NAS as it bounds
the possibilities of architectures and significantly influences the outcome
of the search. The search space could be as broad as all possible configu-
rations of a certain network type or as specific as various arrangements of
a predefined set of layers or blocks. For instance, [219] define their search
space as a set of repeatable sub-structures composed of basic layers (con-
volution layers, fully connected layers, BN layers, etc...) often called cells
that are stacked to form the final architecture, while [202] design their
search space based on the connectivity patterns between network blocks.
DARTS [119] propose a continuous search space where the architecture
is parameterized as a differentiable function, allowing for efficient search
using gradient-based methods. Hierarchical search spaces, on the other
hand, offer a strategic approach which allows to manage the complexity
of the architecture search in NAS [118, 185]. In such a setup, the archi-
tecture is divided into several levels of hierarchy, with each one searched
independently. This structure enables a more systematic and organized
exploration of the search space, allowing the algorithm to uncover useful
patterns and configurations at different levels of the network. The Effi-
cientNet models are exemplary of innovative architecture search strategies
[184]. This series utilizes both NAS and compound scaling. A baseline,
EfficientNet-B0, was developed through multi-objective NAS, optimizing
both accuracy and Floating Point Operations (FLOPs). Subsequently, a
compound scaling method was applied to this baseline, uniformly scaling
depth, width, and resolution via a compound coefficient. This approach
yielded a series of progressively larger EfficientNet models, whose perfor-
mances are shown in 3.11.

Search strategy. The search strategy is another major component of
NAS, dictating how the algorithm explores the search space to find the op-
timal architecture. A wide range of search strategies have been proposed.
Evolutionary algorithms [158] use principles of natural evolution such as
mutation, crossover, and selection to explore the search space. Despite
their potential to find high-quality solutions, these methods often require

63

3.4. ARCHITECTURE DESIGN

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)

74

76

78

80

82

84

Im
ag

en
et

To
p-

1
A

cc
ur

ac
y

(%
)

ResNet-34

ResNet-50

ResNet-152

DenseNet-201

Inception-v2

Inception-ResNet-v2

NASNet-A

NASNet-A

ResNeXt-101

Xception

AmoebaNet-A
AmoebaNet-C

SENet

B0

B3

B4

B5
B6

EfficientNet-B7

Figure 3.11: ImageNet top-1 accuracy vs model size (in millions of parame-
ters). The EfficientNet family of models significantly outperforms other models
of similar size, obtained either by NAS or manual design. This graph is taken
from [184].

substantial computational resources due to the large number of evaluations
needed. Reinforcement Learning-based methods [219] employ a policy net-
work to generate architectures and a reward signal, typically validation
accuracy, to guide the search. While reinforcement learning methods can
effectively navigate large search spaces, their success heavily depends on
the quality of the reward signal. Gradient-based methods [119, 204] make
the search space continuous and use gradient descent for optimization,
which enables efficient exploration of the search space but requires care-
ful regularization to prevent overfitting. [10] uses Bayesian optimization
to build a probabilistic model of the objective function and uses it to se-
lect promising architectures, balancing exploitation and exploration. This
method can be sample-efficient but might struggle with high-dimensional
spaces. These diverse strategies offer multiple paths to navigate the com-
plex landscape of architecture search, each with its unique compromises
between efficiency, effectiveness, and computational demands.

64

CONTENTS

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Number of FLOP (109)

60

65

70

75

80

Im
ag

eN
et

 T
op

-1
 A

cc
ur

ac
y

(%
)

AlexNet

VGG19
VGG16

VGG13
VGG11

InceptionV3

GoogLeNet
ResNet-18

ResNet-34

ResNet-50

ResNet-101
ResNet-152

DenseNet-121

DenseNet-161

MobileNetV1
MobileNetV2

MobileNetV3

SqueezeNet

ShuffleNetV1

ShuffleNetV2

EfficientNet-B0
EfficientNet-B1

EfficientNet-B4 EfficientNet-B5

MNASNET-0.5

MNASNET-1.0
DARTS

NASNet-A

NASNet-C

Size (Millions of parameters)
10M
50M
100M

Type of Architecture
Standard Architectures
Efficient Architectures
NAS

Type of Architecture
Standard Architectures
Efficient Architectures
NAS

Figure 3.12: Figure 3.10 updated with the size and performance of architectures
detailed in section 3.4.2. Best viewed in colours.

3.5 Compressing and Optimising an Existing Ar-
chitecture

While the prior sections have primarily focused on constructing new, ef-
ficient network architectures and mechanisms for automatic architecture
discovery, this part of the chapter transitions towards compressing and op-
timising existing neural networks. The methods discussed in this section,
namely quantisation, binarisation and pruning, are specifically geared to-
wards leveraging and enhancing already existing architectures or trained
models. Instead of developing a new architecture, these techniques seek to
make an existing architecture more efficient by modifying its weights and
connections.

Section 3.5.1 delves into the methodologies of quantisation and bina-
risation. These methods endeavour to reduce the numerical precision of
weights and activations in a network, without a significant drop in over-
all performance. This process can significantly speed up computations
and decrease memory usage, contributing to the increased efficiency of a
pre-existing network, especially in environments with limited hardware or
memory resources.

Subsequently, section 3.5.2 examines the application of pruning tech-
niques. Pruning refers to the elimination of redundant or insignificant

65

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

weights and connections in a network, leading to a sparser and more ef-
fective architecture. Pruning an existing network can further enhance effi-
ciency by reducing the computational resources needed with a minimal or
controlled impact on the performance.

Through these methods, this section aims to demonstrate how the ef-
fectiveness of existing neural networks can be optimised, thereby offering
another viable path towards generating more efficient models without cre-
ating new architectures from scratch.

3.5.1 Lower Precision Weights and Activations Represen-
tation

Quantization is the process of converting continuous, high-resolution input
values into a lower-resolution and typically discrete representation. His-
torically, the training of neural networks has largely relied on the use of
single-precision floating-point format (FP32). FP32 has been the default
choice due to its wide support across various hardware platforms and soft-
ware libraries, which has made it a practical and convenient choice for the
majority of machine learning tasks [182]. However, using single-precision
floating-point format is not always necessary, and it is possible to constrain
neural networks to use lower precision values, effectively quantising its
parameters or feature maps, while maintaining compelling performances.
Quantising a neural network can result in a reduced memory footprint
as well as faster computation if the operations are implemented to lever-
age the specificity of the quantisation or paired with appropriate hardware.

Quantising a neural network has been proposed as early as the 1990s
[7, 40]. This later regains traction as Vanhoucke et al. leveraged Single
Input Multiple Data instructions (SIMD) of x86 processor to speed up the
fixed-point 8-bit operations [192]. Gupta et al. [57] used uniform quan-
tisation with fixed-point 16-bit representation and stochastic rounding to
train neural networks. Quantisation has also been applied together with
K-means clustering [179]. [60] uses K-means clustering to iteratively com-
pute a lookup table or code book for the weights. This codebook is later
further compressed using Huffman coding [88]. Note that this method is
mostly useful for storage, but for training or inference, the weights need to
be decompressed and their original value fetched in the code book before

66

CONTENTS

being used.

Logarithmic quantisation. Logarithmic quantisation provides com-
pelling alternatives to uniform quantisation. On the one hand, logarithmic
quantisation enables quantising weights with a larger dynamic range com-
pared to uniform or linear quantisation. On the other hand, multiplication
can be conveniently represented as an inexpensive bit shift operation if
operands are properly represented in the logarithmic base. This is partic-
ularly beneficial for FPGA implementations [3]. To leverage this potential
speedup, [117] forced the weight representation to be a power of two and
[214] improved this technique by applying it iteratively.

Figure 3.13: Example of binarised kernels and activations in a convolutional
layer. The kernels are taken from the first layer of a CNN trained on CIFAR-10.
Image taken from [87].

Binarisation. A more extreme version of the quantisation has been pro-
posed in [23], where the weight values are either −1 or +1. The concept
of minimising the bit-width of weights to a bare minimum is called binari-
sation. This allows for a dramatic simplification of the computation in the
neural network at the expense of a drop in performance. Binarisation has
been further developed in [87], where the authors proposed a method to
binarise both weights and activations (see examples of binarised kernels in
figure 3.13). DoReFa-Net [216] built upon the success of binarised neural
networks and introduced the stochastic 8-bit quantisation of the gradients
during the backward pass to accelerate both training and inference.

When to quantise. Quantisation methods that quantise weights or acti-
vations after the training are called Post-Training Quantisation methods.
Quantising an already existing network is a widely used technique in the

67

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

most famous deep learning framework [187, 33, 155, 143]. Because they
quantise the weights after the training, these methods are fast and easy to
apply. However, they often introduce an irreversible information loss and
a performance drop that needs to be compensated for [112]. In order to
solve this issue, several works proposed to take into account the effect of
quantisation on the weights and feature maps during the training. These
methods are called Quantisation-Aware Training methods. Such meth-
ods include BinaryConnect [23], which use a variant of Bayesian inference
called Expectation Back Propagation [17, 176]. Another binarisation me-
thod uses Straight Through Estimator (STE) [9] to bypass the binarisation
function in the backward pass [87]. STE is also employed for quantisation
in [91] which uses it together with fake quantisation nodes for 8-bit quanti-
sation (see figure 3.14). The fake quantisation nodes are injected inside the
computation graph and simulate the effect of quantisation in the forward
pass.

Quantisation and binarisation are solutions to compress and accelerate
neural networks. The potential of these techniques is vast, as they offer
significant reductions in memory usage and enhanced computational speed
when implemented correctly and paired with suitable hardware. How-
ever, these benefits are not without their drawbacks. On the downside,
such techniques introduce a certain degree of error which can result in a
performance drop, especially if not properly managed during the train-
ing process. This information loss is particularly notable in the case of
Post-Training Quantisation methods, which necessitate additional efforts
to mitigate these performance impacts. To address this, Quantisation-
Aware Training methods have been developed, which incorporate the ef-
fects of quantisation during the training phase itself. The more extreme
approach, binarisation, further accentuates the advantages and disadvan-
tages observed in quantisation. While it offers extreme compression of
neural networks, this often comes at the cost of significant accuracy loss.

3.5.2 Removing Weights and Connections
Lightweight neural networks can be obtained from a larger network through
pruning. Pruning is the process of removing weights or connections, identi-
fied as redundant or unnecessary, while limiting to a minimum the impact
on the performance of the network. The identification of the latter, often

68

CONTENTS

conv

+

ReLU6

weights

biases

Input
uint8

uint8

uint32

uint32

uint8

uint8
output

(a) Fake quantisation in-
ference

conv

+

ReLU6

fake
quant.

biases

Input

output

weights

fake
quant.

(b) fake quantisation training

Figure 3.14: Fake quantisation nodes (fake quant.) are included in the compu-
tation graph of figure 3.14b, whereas figure 3.14a represent the computaion graph
used during inference. During the inference, weights are stored in uint8 format,
whereas the bias are not, because their computational overhead is negligible.[91].
Both illustrations are adapted from [91].

referred to as determining the saliency of weights, has been a hot spot in
the pruning literature [111, 16, 113]. Pruning a neural network removes
weights and consequently reduces the theoretical computational complex-
ity of the network as well as its memory footprint. The fraction of weights
removed during pruning is often denoted as the pruning rate, which is com-
monly defined as the fraction of the number of weights removed from the
original network over the number of initial weights in that network. Ar-
guably, the first pruning method, introduced in 1989, was based on biased
weight decay [62]. In the following years, LeCun et al. proposed a pruning
method entitled Optimal Brain Damage [105] that used the Taylor expan-
sion of the loss hessian matrix to identify the weights whose removal would
have the least impact on the loss. This method, and in particular the
computation of the hessian matrix was refined in Optimal Brain Surgeon
[63, 65, 64]. As neural networks have become larger and more computation-
ally intensive (see section 2.4.2 and figure 2.9), pruning has been receiving
increased attention as a method to compress the latter. Pruning methods
can be classified into two categories: structured and unstructured.

Structured pruning. Structured pruning involves the removal of entire
structural components of the network, such as rows, columns, channels,
filters, layers or even whole subnetworks (note that pruning a channel in
layer ℓ + 1 implies pruning a filter in layer ℓ, and vice-versa). This type of

69

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

pruned column
or row pruned channel pruned filter

pruned subnetwork

......Network:

Filter:

(a) Structured pruning

pruned weight

preserved weight

(b) Unstructured prun-
ing

Figure 3.15: Conceptual illustrations of structured and unstructured pruning.

pruning results in regular2 network structures that are easier to exploit on
typical hardware and do not necessitate a specific sparse computing library
or hardware, making it an attractive approach for practical deployment.
To some extent, structured pruning can be seen as a subcategory of Neural
Architecture Search (section 3.4.2), where the search space would be the
structure of the network to be pruned. Structured pruning leads to reduced
computation complexity as well as significant memory footprint reduction,
however, it also presents unique challenges. The impact of removing struc-
tural components can be much greater than eliminating individual weights,
hence, structured pruning often requires more careful consideration of the
trade-off between the model performance and complexity reduction. Since
structured pruning operates on a coarser scale, it typically results in lower
pruning rates compared to unstructured pruning.

Weight-dependant structured pruning. One of the main categories
of structured pruning for CNN is weight-dependent pruning. This strategy
assesses the importance of filters based on their respective weights. The
Pruning Filter for Efficient ConvNets method [110] focuses on the filter
norms as their saliency indicator. Filters with smaller ℓ1 norms, which
result in weak activations, are assumed to contribute less to the final clas-
sification decision, hence they become the prime candidates for pruning.

2regular in this context means that all weight tensors are dense and that the acceler-
ation of computations does not rely on sparse computing enhancement.

70

CONTENTS

The Filter Pruning via Geometric Median method [70] calculates the ge-
ometric median of a set of filters and prunes those filters that are nearest
to this geometric median, rather than the ones considered less important
by [110]. The filters close to the geometric median are considered by He
et al. to be redundant with other filters in the same layers. Wang et al.
used another approach to determine redundancy in [198]: The filters are
organized into a graph based on their proximity in the space in which they
are defined. A redundancy metric is computed for each graph and the least
important filters are pruned in the graph with the highest redundancy (as
per the authors, any other method for filter importance evaluation can be
used [110, 149, 139]). This process is iteratively applied until the targeted
pruning rate is reached. These weight-dependent strategies tend to be
straightforward and usually demand lower computational costs compared
to other methods [68]. They provide an intuitive understanding of how dif-
ferent filters contribute to the overall network performance based on their
weight characteristics.

prune weak filters

* … …*Original

Model

* *
……

Pruned

Model

input of

layer 𝑖
filters of

layer 𝑖
input of

layer 𝑖+1

filters of

layer 𝑖+1

input of

layer 𝑖+2

fine-tuning

* *
……

Fine-tuned

Model

Figure 3.16: Illustration Scheme of ThiNet. The dotter filters and correspond-
ing channels are the ones to be pruned. Once they are removed, the pruned
network is fine-tuned. Image taken from [130]

Activation-based structured pruning. Another prominent category of
structured pruning is activation-based pruning, where activation denotes
the result yielded by a layer for given input data. This method takes ad-
vantage of activation maps (also called feature maps) for filter pruning.
Removing a channel in a feature map is equivalent to removing the fil-
ter that computed this channel. He et al. proposed a method to prune
filters based on a LASSO regression selection while minimising the least
square reconstruction error or the feature map [71]. Hu et al. capitalised

71

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

on the abundance of zeros in feature maps that follow the ReLU activation
function. They introduced the method called Average Percentage of Zeros
(APoZ) that identifies channels in the feature map with a high count of null
outputs. These channels, which contribute minimally to the final outcome,
can hence be pruned. While the aforementioned methods consider only
the feature map of the layer to be pruned, techniques like ThiNet [130]
and Approximated Oracle Filter Pruning [28] exploit the relationships be-
tween layers to guide pruning. They take into consideration the effect a
filter removal in one layer has on the next, allowing for more contextual
pruning decisions. More globally, approaches such as Neuron Importance
Score Propagation [208] and Discrimination-aware Channel Pruning [218]
consider the holistic effect of removing a filter. They aim to understand
and quantify the total impact on network performance when a specific fil-
ter is removed, accounting for cascading effects across all layers.

Regularisation-based structured pruning. Other methods learn struc-
tured sparse networks by introducing various sparsity regularizers. Some
methods focus on Batch Normalisation parameters, employing methods
like Gated Batch Normalisation [207] and Network Slimming [124]. These
methods aim to push certain BN parameters towards zero, effectively dis-
abling corresponding channels and inducing sparsity. Network Slimming
applies a ℓ1 regularisation on the scaling factors γ of the BN [124], whereas
[207] adds the ℓ1 regularisation on scalar factors associated with feature
map channels. Kang and Han use BN parameters to craft a mask that
prunes channels whose output is likely to be null once evaluated by the
ReLU [96].

Binary Masks Feature Map Differentiable Masks Feature Map

(a) Previous Methods (b) Our Method

Not Updated 1.0 0.0 Updated strong weak

Masked
Feature Map

Masked
Feature Map

Figure 3.17: Comparison of the method described in [96] (right) and standard
channel pruning (left). The differentiable mask allows for a soft pruning that
can be reverted during the training. Image taken from [96]

72

CONTENTS

Taylor Expansion-based structured pruning. The Taylor Expansion
is a tool that can be used to approximate the change in the loss func-
tion due to pruning. Early unstructured pruning methods, Optimal Brain
Damage [105] and Optimal Brain Surgeon [64] used Taylor expansion of
the hessian matrix to remove weights with the least impact on the loss
function. More recently, in [139], Molchanov et al. used first-order Taylor
expansion of the loss function to compute the importance score and prune
the feature maps. This was later refined in [140] where the authors com-
puted the importance score on the weight, rather than the feature maps,
to lower memory consumption.

Variational structured pruning. Variational Bayesian methods provide
a way to tackle the computationally intensive process of inferring posterior
probability distributions in large data sets, by approximating the poste-
rior distribution with a variational distribution [42]. Specific methods like
Variational Pruning [213] and Recursive Bayesian Pruning [217] use this
approach to create more effective and stable pruning mechanisms for neu-
ral networks. Variational Pruning, models channel importance as random
variables, utilizing the centrality property of the Gaussian distribution to
induce sparsity [213], while [217] targets the posterior of redundancy, as-
suming inter-layer dependency among channels.

Dynamic structured pruning. Dynamic pruning represents a differ-
ent approach in which neural networks are pruned during both training
and inference, which facilitates maintaining the model representation ca-
pability and offers superior resource consumption-accuracy trade-offs. In
the training phase, Dynamic Network Surgery [56] introduces the concept
of dynamic pruning through an unstructured approach. This method ap-
plies a binary mask indicating the importance of weights and updates it
alternately with all the weights, allowing incorrectly pruned parameters
an opportunity to revive. Soft Filter Pruning [69] implements a structured
version of dynamic pruning. Instead of employing a fixed mask throughout
the training, which could limit the optimization space, Soft Filter Prun-
ing dynamically generates masks based on the ℓ2 norm of filters at every
epoch. The dynamic nature of Soft Filter Pruning allows soft-pruned fil-
ters to be updated in the next epoch, with new masks being formed based
on the updated weights. Focusing on the inference stage, Lin et al. intro-
duced Runtime Neural Pruning [115] which employs a unique framework
consisting of a CNN backbone and a recurrent neural network as a decision

73

3.5. COMPRESSING AND OPTIMISING AN EXISTING ARCHITECTURE

network. This approach enables the model to adapt to the properties of
different input images by dynamically adjusting its complexity. For easier
tasks or simpler images, the network can become sparser, saving computa-
tional resources. Deep Reinforcement Learning pruning [14] learns both the
static and dynamic importance of channels. The static importance refers
to the channel’s relevance for the entire dataset, while the dynamic im-
portance is tied to a specific input. Deep Reinforcement Learning pruning
[14] applies reinforcement learning to generate a unified pruning decision
based on these two aspects of channel importance. More recently, Elker-
dawy et al. recently introduced Fire Together Wire Together [37], another
dynamic pruning method that treats pruning as a self-supervised binary
classification problem. It employs a prediction head to train learnable bi-
nary masks and uses a crafted ground truth mask to guide the learning
after each convolutional layer. This head takes advantage of the ReLU
activation function, which zeros out negative values, to identify the filters
that will yield zero activations based on the input and that will be subse-
quently pruned.

As previously discussed, structured pruning removes indivisible groups
of weights and therefore yields regular network architectures that can be
implemented in standard deep learning frameworks in a straightforward
way. Despite its practicality, structured pruning enforces a strong topolog-
ical prior by pruning entire groups of weights from the original network,
which consequently leads to a lower sparsity rate compared to its counter-
part, unstructured pruning. Unstructured pruning provides a more flex-
ible approach by removing individual weights from the original network
structure. This process not only offers greater adaptability compared to
structured pruning, but also results in higher pruning rates.

Unstructured pruning. In the early stages, unstructured pruning method-
ologies identified weights that could be eliminated based on their influence
on the Hessian of the loss function [105, 64, 65]. A simpler and more
tractable strategy for larger networks was later introduced by Han et al.
in [59], suggesting a straightforward heuristic: the pruning of weights with
the smallest magnitude (i.e. absolute value), also referred to as magni-
tude pruning. This technique presented in [59] devises an iterative method
wherein a portion of the smallest magnitude weights are removed, followed
by the retraining of the network to compensate for the drop of the accu-
racy. This cycle is reiterated until the preferred level of sparsity is attained.

74

CONTENTS

Furthermore, magnitude pruning has been used together with quantisation
and compression techniques to minimise the storage footprint of a network
[60]. Magnitude pruning has also been used in energy-efficient CNN de-
sign, as detailed in [205]. In this research, the energy consumption of each
layer is evaluated, and the layers with the highest energy expenditure are
pruned using unstructured magnitude pruning. This layer is then fine-
tuned to retain the network accuracy. This process is repeated iteratively
until a noticeable drop in accuracy is observed. Dynamic Network Surgery
[56] puts forward a derivative of magnitude pruning. A mask, whose value
is updated during training, is computed for each weight. This mask is used
to stochastically prune a weight or splice3 it. The saliency of the weights
is ascertained based on the magnitude of the associated mask.

Effective subnetworks. More recently, unstructured pruning researches
focus on the discovery of small subnetworks inside the original network. In
other words, to identify a subset of weight that can perform, under certain
conditions or assumptions, as well as the original network. Most notably,
the Lottery Ticket Hypothesis [43] states that within a large, randomly ini-
tialized neural network, there exist subnetworks or Lottery Tickets that are
capable of training effectively when isolated from the rest of the weights.
These smaller networks, found by pruning the smallest magnitude weights
from the trained original network, are observed to train faster and achieve
comparable or even superior performance with respect to the original net-
work. The lottery ticket is found by training the original network up to
convergence, then pruned with magnitude pruning and finally, the remain-
ing weights are reinitialized to their original values, it is to say the value
they had before the training even started. The resulting subnetwork is
the lottery ticket. This research sparked significant interest and various
works: [215] proposed an analysis of the results presented in [43]. These
results [43] have been extended to larger networks in [44], the necessity
of training the original network to convergence to find the Lottery Tickets
has been challenged in [123]. The existence of the lottery ticket (or in other
words the subnetwork) has been theoretically proven in [132] and the re-
quirements on the theoretical size of the original network have been later
refined in [148, 145].

3to splice is the verb used by the authors (Guo et al.) to denote the reactivation of a
weight that was previously pruned

75

3.6. POSITIONING

3.6 Positioning
Within the various deep neural network compression methods presented
in this chapter, we choose to focus specifically on pruning in the context
of supervised image classification. Among various types of pruning, our
interest goes towards unstructured pruning due to the flexibility it offers,
in particular, its potential for achieving high pruning rates compared to
structured pruning.

Our decision to work on pruning is rooted in the following considerations:

• First, pruning allows the creation of lightweight networks while pre-
serving or sometimes improving the performance of the original net-
work.

• Then, pruning integrates well with other compression techniques and
can be applied in conjunction with them, on any kind of architecture.

• Finally, pruning does not necessitate the creation and development of
an architecture from scratch. It can be applied to an already existing
architecture to compress it, which makes it possible to develop small,
lightweight networks without the need for extensive research into the
creation of the base architecture. This approach allows freeing explo-
ration and research and development efforts that can be allocated to
other topics.

Despite its numerous advantages, pruning is not without challenges.
One such challenge is the identification of the weights to be preserved.
This is a topic that is the subject of many works detailed in this chapter.
Additionally, the preserved weights typically require fine-tuning, which can
impose a substantial computational cost. This process of fine-tuning can
be both time-consuming and resource-intensive.

Chapter 4 delves into the fine-tuning issue and presents a new pruning
method that circumvents the need for the expensive fine-tuning step. Its
budget loss together with the weight reparametrisation allows for joint op-
timisation of the topology and the weights of the network without the need
for auxiliary variables. As a result, the obtained lightweight networks pre-
serve accuracy after effective pruning and do not require fine-tuning. Fur-
thermore, chapter 5 tackles the challenge of identifying relevant weights
without even having to train them. It proposes a method of topology

76

CONTENTS

selection given a set of untrained weights that achieves compelling per-
formances, thereby also sidestepping the fine-tuning. In contrast to other
methods, the optimal pruning rate is discovered in one shot by our prun-
ing strategy that circumvents the costly gird search for its value. This
innovative approach opens up new possibilities for further reducing the
computational costs associated with pruning and provides a new direction
for future research in this area, as well as neural network training without
weight tuning in general.

3.7 Conclusion
The evolution of neural networks, along with the growing demand for their
deployment in resource-constrained environments, has underlined the need
for neural network compression techniques. This chapter has examined
the state-of-the-art methodologies for reducing the computational demands
and memory footprints of deep neural networks, thereby facilitating their
usage in a variety of application domains.

First, we explored chapter 2 the historical progression and the major
architectures of deep neural networks, illustrating the connection between
their complexity and performance. Then, in this chapter, we first investi-
gated the techniques for accelerating computations within neural networks,
emphasising the role of fast convolution techniques in reducing both run-
time and computational resources. Our focus then shifted to Knowledge
Distillation, a paradigm that allows the transfer of knowledge from a large,
complex network to a smaller, more efficient one. The core idea is to teach a
lightweight student network to mimic the behaviour of a teacher network,
thus achieving comparable performance with a reduced footprint. Next,
we delved into efficient architecture design methods, including bespoke
architectures designed to minimise size while maintaining performance,
and Neural Architecture Search strategies for automating the discovery
of optimal architectures. Lastly, we addressed the strategies for compress-
ing and optimising existing neural networks, considering both quantisation
and binarisation techniques that lower the numerical precision of weights
and activations, as well as pruning techniques that remove redundant or
insignificant weights and connections, resulting in sparser and more com-
putationally efficient models. In conclusion, these techniques provide a
multi-faceted approach to neural network compression and acceleration,

77

3.7. CONCLUSION

with each offering unique advantages and trade-offs.

The next chapters will present our contributions to neural network
compression based on pruning. The chapter 4 details our first contribution
that consists in a method to simultaneously train and prune neural net-
works while matching a budget. This method allows bypassing the need for
the finetuning step present in most methods based on magnitude pruning
by jointly optimising the topology and the weights without the need for
additional auxiliary parameters.

78

Chapter 4

Weight Reparametrization
for Budget-Aware Network
Pruning

79

80

Contents
4.1 Introduction and Related Work 82

4.1.1 Unstructured Magnitude Pruning. 83
4.1.2 Weight Reparametrisation 85
4.1.3 Pruning with Budget 86
4.1.4 Pruning without fine-tuning 87
4.1.5 Contributions . 90

4.2 Pruning with Weight Reparametrisation and Budget Loss . 91
4.2.1 Weight Reparametrisation 93
4.2.2 Budget Loss . 97

4.3 Method and Algorithm Overview 99
4.4 Experiments . 101

4.4.1 Experimental Setup 101
4.4.2 Performances . 102
4.4.3 Optimal Value of λ 103
4.4.4 Validation of the Budget Loss 109
4.4.5 Validation of the Reparametrisation 110
4.4.6 Tuned Initialisation 114

4.5 Conclusion . 117

Chapter Abstract
This chapter addresses the challenge of compressing large

neural networks, whose time and memory footprints are increas-
ingly high. Although large neural networks have shown impres-
sive performances across various domains, they are not deploy-
able on embedded devices due to their size. Among the exist-
ing techniques that yield lightweight neural networks, pruning
is a popular approach that seeks to reduce the size of neural
networks by removing redundant or unnecessary weights. How-
ever, most of the pruning methods rely on saliency indicators

81

4.1. INTRODUCTION AND RELATED WORK

that identify removable weights after training without consid-
ering the targeted pruning rate.

In this chapter, we propose an alternative pruning approach
based on weight reparametrization. Our method incorporates
a budget loss that drives sparsity toward the targeted pruning
rate during training. The weight reparametrisation acts as a
mask that soft-prunes the smallest weights, while the budget
loss serves as a surrogate ℓ0 norm that regulates the network
budget. As a result, our approach significantly mitigates the
performance drop, induced by pruning, with respect to the un-
pruned network compared to other methods. We demonstrate
experimentally the effectiveness of our method across various
pruning rates, datasets, and architectures, including Conv4,
VGG16, ResNet20 on CIFAR-10 and CIFAR-100, and ResNet18
on the more challenging TinyImageNet dataset.

We also evaluate the effectiveness and relevance of our me-
thod in a comparative experimental analysis using different set-
tings. Furthermore, we evaluate the proposed approach with an
already tuned and pruned initialisation and show that it out-
performs common fine-tuning methods. Our results show that
our proposed approach is a promising alternative to existing
pruning techniques, providing an efficient and effective way to
reduce the size of neural networks while eliminating the need
for costly fine-tuning steps.

This chapter presents work that has resulted in the publication
of the following conference article:

• Robin Dupont, Hichem Sahbi, and Guillaume Michel. Weight
reparametrization for budget-aware network pruning. In
2021 IEEE International Conference on Image Processing,
ICIP 2021, Anchorage, AK, USA, September 19-22, 2021,
pages 789–793. IEEE, 2021.

4.1 Introduction and Related Work
This chapter addresses the challenge of pruning large neural networks with-
out degrading their performance. Most of the existing pruning methods
degrade the performance of neural networks due to the pruning step that

82

CONTENTS

removes weights from the networks. Therefore, a costly fine-tuning step
is usually required in order to compensate for the loss in performance.
The method we introduce in this chapter circumvents this issue and yields
lightweight pruned networks with minimal performance degradation. This
is achieved through a combination of weight reparametrisation that en-
compasses a surrogate ℓ0 norm and a budget loss that drives the sparsity
toward the predefined pruning rate.

Pruning is an excellent way to obtain lightweight neural networks be-
cause it reduces the number of parameters in a pre-trained network without
the need to design a new architecture. Instead of starting from scratch,
pruning techniques can be applied to existing architectures, which have
been trained and tested on large-scale datasets. Pruning aims to reduce
the number of network parameters by removing redundant or unnecessary
weights from a given network referred to as the original network. It then
yields a sparsified and lightweight architecture, hereafter referred to as
pruned network. Pruning methods can be split into two major categories:
(i) unstructured weight pruning, where individual weights of a given net-
work are removed based on their importance, and (ii) structured pruning,
where entire columns, rows, channels, filters or even entire parts, such as
skip connections of a residual network [67], are removed. Our method be-
longs to the first category. The subsequent sections provide an overview
of related works on unstructured pruning, pruning with weight repara-
metrisation, budget loss and pruning without fine-tuning, followed by the
contributions of this chapter.

4.1.1 Unstructured Magnitude Pruning.

Unstructured magnitude pruning has emerged as an effective heuristic for
determining the saliency of the weights. This method focuses on remov-
ing independent weights from the global structure of the network, hence
offering greater flexibility compared to structured pruning which imposes
a strong topological prior by eliminating whole sections of the original net-
work. Magnitude pruning revolves around the hypothesis that the smallest
weights contribute less to the final output of the network and can thereby
be removed with minimal impact on the performance. Considering a weight
tensor w, if p represents a pruning function, magnitude pruning can be for-

83

4.1. INTRODUCTION AND RELATED WORK

malised and implemented as follows:

wpruned = p(w, α) = w⊙mα (4.1)

where α is a threshold, ⊙ denotes the Hadamard product and mα is a
binary mask that is defined as follows:

(mα)ij =
0 if |wij| ≤ α

1 otherwise
(4.2)

In equation (4.2), the threshold α is typically chosen to be the k-th per-
centile of the weights so that the pruning rate, defined as the fraction of
non-zero weights, is equal to k.

Unstructured magnitude pruning has been used in various works and
in particular in [59] where a three-step process is proposed:

1. The process begins with standard training to identify the most impor-
tant connections within the network.

2. This is followed by a magnitude pruning step where weights with the
smallest magnitude (or absolute value) are removed until a given prun-
ing rate is reached.

3. The final step involves fine-tuning the remaining weights to compen-
sate for any loss of accuracy caused by the pruning.

The authors also propose an iterative variant where steps 2 and 3 are
repeated while gradually increasing the pruning rate until the final prun-
ing rate is reached. This method was used in [60], where it was combined
with quantisation and Huffman coding. In both methods [59, 60], obtain-
ing the final network is computationally intensive due to the fine-tuning
step, which can be all the more computationally intensive if the magnitude

84

CONTENTS

pruning and fine-tuning are performed iteratively.

Unstructured magnitude pruning has gained significant renewed inter-
est with the advent of the Lottery Ticket Hypothesis (LTH) [43]. An
empirical study in [43] demonstrated the existence of subnetworks, termed
Lottery Ticket (LT), within large pre-trained networks. These subnet-
works, when trained with initial weights from the larger networks, yielded
comparably accurate classifiers. To isolate these lottery tickets, the au-
thors rely on magnitude pruning or its iterative variant to identify the
subnetworks. The large network is trained to convergence, then its weights
are pruned with magnitude pruning, and restored to their original val-
ues. Despite the potency of this approach, its practical application is often
hindered by the computationally intensive training and fine-tuning steps
required to obtain a trained lightweight subnetwork.

4.1.2 Weight Reparametrisation

Weight reparametrisation is a technique where the weights are expressed
as a function of other variables. Typically the weights used in the net-
work, here denoted ŵ and referred to as apparent weights, are expressed as
a function of the latent weights w and other variables. In [172], Schwarz
et al. presented a weight reparametrisation based on raising a weight to the
power of n while preserving its sign. This reparametrisation is formalised
as:

ŵ = w⊙ |w|n−1 (4.3)

where n is a hyperparameter of the method, typically set between 1 and
3 [172]. This reparametrisation creates a rich get richer (sic) dynamic
according to the authors, referring to the fact that the weights with the
largest magnitude are all the more increased. The pruning is enforced by
pruning reparametrised weights with magnitude pruning.

85

4.1. INTRODUCTION AND RELATED WORK

4.1.3 Pruning with Budget
Most pruning techniques, including the ones presented in this section, en-
force a pruning rate after the initial training. Consequently, the optimisa-
tion process does not take into account the final weight budget that will
be allocated to the network. Some work tackled this issue by adding a loss
that drives the network to respect a budget. Note that the works described
subsequently all fall into the structured pruning category.

Lemaire et al. introduced in [108] a Budget-Aware Regularisation loss
or BAR loss that performs structured pruning on the channels of the acti-
vations (and consequently of the kernels of the layer yielding it). This loss
is combined with the task loss to drive the sparsity toward the targeted
pruning rate as described in equation (4.4). The relative importance of
both losses is set with a strictly positive mixing coefficient λ.

L = Ltask + λLBAR (4.4)

The BAR loss is responsible for introducing sparsity in the network and
for driving the sparsity toward the targeted pruning rate. It is defined as
follows:

LBAR(Φ, V, a, b) = LS(Φ)f(V, a, b) (4.5)

where Φ is a mask sampled from the hard concrete distribution [127], a
continuous relaxation of the Bernoulli distribution. V is the current bud-
get used by the network, computed as the fraction of active channels in the
activations and referred to as the activation volume by the authors, b and
a are hyperparameters detailed subsequently. This BAR loss is composed
of two parts. The first part, LS(Φ) introduces sparsity in the network by
penalising the masks Φ with the hard concrete loss [127], and the second
part f(V, a, b) controls the budget. The function f implements a variant of
the log barrier function [11], where a controls the steepness of the function
and b is the target budget.

86

CONTENTS

ChipNet [189] is another channel-based structured pruning method that
includes a sparsity inducing loss Lc dubbed as crispness loss and a budget
loss Lb. Both losses are combined with the task loss with two mixing coef-
ficients α1 and α2 respectively, as shown in equation (4.6):

L = Ltask + α1Lc + α2Lb (4.6)

Each channel of the network is associated with a mask, and the crisp-
ness loss ensures crisp mask values, that is to say, close to 0 or 1. For the
budget loss, authors of [189] propose four variants depending on the type
of budget that is enforced, namely: a channel budget that computes the
fraction of channels that are not pruned, a volume budget that is equivalent
to the activation volume of [108], a parameter budget and finally a FLOP
budget. In their experiments, the authors reported that they fine-tuned the
networks after the pruning with the same hyperparameters as the initial
training phase and in particular with the same number of epochs, effec-
tively doubling the training time.

4.1.4 Pruning without fine-tuning
Most pruning methods cause a performance drop following the pruning
step. This is due to the fact that the weights that are removed play a
non-negligible role in the network. In this context, fine-tuning is a com-
mon technique that aims to recover the lost performance but fine-tuning
is a computationally intensive task. Some works propose pruning methods
that are designed to circumvent the need for fine-tuning [63, 64, 96].

Optimal Brain Surgeon (OBS) introduced in [63] by Hassibi and Stork
is a Hessian-based pruning method that builds upon [105] but contrary to
the former, it relaxes the diagonal assumption of the loss Hessian matrix.
OBS is a second-order pruning method that uses the Hessian matrix of
the loss function to identify the most removable weights and determine
the optimal update for the remaining weights in order to mitigate the per-
formance drop. Among their contributions in [63], [63] also proposed an
iterative method to compute the inverse of the Hessian matrix but this is
outside of the scope of this section. OBS considers the following expression

87

4.1. INTRODUCTION AND RELATED WORK

of the loss function Taylor expansion at a local minimum:

δL =
(

∂L
∂w

)T

· δw + 1
2δwT ·H · δw + O(∥δw∥3) (4.7)

where δL is the variation of the loss function, δw is the variation of the
weights and H is the loss Hessian matrix w.r.t. the weights. In equa-
tion (4.7), at a local minimum, the first term vanishes and the author
neglects higher-order terms. The equation (4.7) is updated to:

δL ≈ 1
2δwT ·H · δw (4.8)

Each weight is associated with a saliency indicator that represents its im-
pact on the loss, whose variation is quantified by equation (4.8), as well
as an update vector that is applied to the other weights to mitigate the
performance drop if the considered weight were to be pruned. Both quan-
tities (saliency indicator and update vector) are computed by minimising
equation (4.8) with respect to the weight to be pruned. The authors then
propose to remove the weight with the smallest saliency indicator and up-
date the remaining weights.

This process is repeated until a defined stopping criterion. Hassibi and
Stork suggest stopping the pruning process when the impact on the loss
function is no longer negligible compared to the value of the loss itself.
Once the pruning is stopped, the remaining weights can be used as is and
do not necessitate further fine-tuning thanks to the corrections applied
with the update vector. The authors applied this method successfully on
small networks (a few tens of thousands of weights) compared to modern
architectures (see table 2.1). This method is intractable in practice with
larger neural networks, in particular the computation of the Hessian ma-
trix whose size is quadratic in the number of weights of the network.

Whereas OBS corrects the remaining weights after pruning, it is pos-
sible to introduce sparsity while training the network. Kang and Han
introduced a stochastic structured pruning method in [96] that prunes the

88

CONTENTS

channels after a BN layer that have the highest probability of being inhib-
ited by the ReLU activation function. Each channel is associated with a
latent mask q, parametrised by a function of the shift and scale param-
eters of the BN layer: Φ(β, γ). The mask applied to the channel during
training is then obtained by binarising q, using the Gumble Softmax trick
[92] to preserve differentiability. Sparsity is then introduced in the masks
by adding a regularisation loss defined as follows:

Lsparse(B, C) =
∑

βj∈B,γj∈C

βj + s|γj| (4.9)

where B and C are the set of shift and scale parameters of the BN, and s
is a hyperparameter of the method. This setup allows for a joint optimi-
sation of the masks through the BN parameters and the network weights.
Once the training is completed, the masks are binarised following equa-
tion (4.10), where c is a given threshold, and then multiplied with their
associated channels to prune the network. Since the optimisation of the
masks is done jointly with the network weights, the network does not ne-
cessitate further fine-tuning.

q(δ; β, γ) =
0 if Φ(β, γ) ≥ c

1 otherwise
(4.10)

These structured or unstructured methods propose different saliency
indicators and pruning criteria that aim at identifying and removing re-
dundant or unnecessary weights or groups of weights. Removing weights is
typically done after the training phase. This approach does not take into
account the final desired model size, or weight budget, during the optimiza-
tion process. In other words, the pruning strategy is an afterthought and is
not integrated into the training process. This results in an inefficient pro-
cess where the network is first trained with a large number of weights, many
of which are later pruned. This introduces a loss of functional performance
- depending on the task considered - that needs to be compensated for (with
the exception of [96, 63]). This is achieved through fine-tuning the sparse
or lightened networks obtained after applying the pruning criterion. Fine-
tuning is a computationally intensive task and requires additional training

89

4.1. INTRODUCTION AND RELATED WORK

time [59, 60]. Moreover, the amount of weights pruned is enforced after
the initial training, meaning that the final targeted size or weight budget
is never considered in the optimisation procedure. Indeed, separating the
optimisation of topology from weight tuning is sub-optimal and therefore
introduces a performance drop when the pruning is enforced. Thus, the re-
maining weights need to undergo a fine-tuning step that adapts them to the
enforced sparse topology. Furthermore, the pruned connections are perma-
nently removed with no possibility of reactivating them during fine-tuning.

4.1.5 Contributions
In order to address the aforementioned issues, namely the need for a costly
fine-tuning step and the lack of consideration for the final budget and
topology, we introduce a novel weight reparametrisation that learns not
only the weights of a surrogate lightweight network but also its topology.
This weight reparametrisation acts as a regulariser that models the tensor
of the parameters of a network, again referred to as the surrogate network,
as the Hadamard product of a weight tensor and an implicit mask. The lat-
ter makes it possible to implement unstructured pruning constrained with
a budget loss that precisely controls the number of non-zero weights in
the resulting network. Experiments conducted on the CIFAR-10, CIFAR-
100 and the TinyImageNet classification tasks, using standard primary
architectures (namely Conv4, VGG16, ResNet20 and ResNet18), show the
ability of our method to train effective surrogate pruned networks without
any fine-tuning.

In what follows, for the sake of conceptual simplicity, we will adopt a
conventional approach where multidimensional tensor entries are indexed
by i, in addition to the layer index ℓ, effectively vectorising these entities
for ease of manipulation.

The rest of this chapter is organised as follows: section 4.2 details the
proposed method and in particular the weight reparametrisation in sec-
tion 4.2.1 and the budget loss in section 4.2.2. An overview of the method
and a general algorithm are given in section 4.3. Section 4.4 presents the
results of our comprehensive experiments, including performance compar-
isons, the experimental validation of our two main components, the impact
of the mixing coefficient λ that balances the task loss and the budget loss,

90

CONTENTS

and the initialisation. Finally, section 4.5 concludes the chapter by sum-
marising our contributions and our key findings.

4.2 Pruning with Weight Reparametrisation and
Budget Loss

Consider the general case of a multi-layer neural network. Following the
notations introduced in section 2.3, a neural network is represented as a
function f of two variables: θ and X. Function f embodies the network
topology, which is essentially a graph, whose edge values are determined by
θ. More specifically, θ represents the collection of weights of the network,
with θ = {w1, w2, . . . , wL} and L denoting the number of layers. Each
element wℓ of θ is a multi-dimensional weight tensor encompassing a total
of νℓ elements, associated with layer ℓ. Following the notation introduced
in section 2.5, the parameter X of f represents the input given to the net-
work. Each input X is associated with a label y, also called ground truth.
This functional conception of a neural network can be formally written as:

f : Rdim(X) → Rdim(y)

X 7→ f(X, θ)

(4.11)

The discrepancy between the output of the neural network and the
ground truth y ∈ Y is computed with a loss function L, whose expression
depends on the considered task. This loss is then minimised by updating
the parameters θ of the network, thanks to the backpropagation algorithm
[168, 169] and gradient descent methods.

When used in the loss function, the ℓ0 norm is perfectly suited for prun-
ing a network by, on the one hand, acting as a sparsity-inducing regulariser
for the weights (θ), and on the other hand, by indicating the number of
non-zero weights in the network, which is useful for computing the weight
budget.

We aim to propose an end-to-end method that fits into the backpropa-
gation framework. Therefore, adding a ℓ0 regulariser and a ℓ0 based weight

91

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

budget is not possible since the ℓ0 norm is not differentiable. Thus, we
propose our differentiable reparametrisation, which seeks to define a novel
weight expression related to magnitude pruning [105, 59]. This expression
corresponds to the Hadamard product involving a weight tensor and a func-
tion applied entry-wise to the same tensor (as shown in figure 4.1). This
function acts as a mask that (i) multiplies weights by soft-pruning factors
which capture their importance and (ii) pushes less important weights to
zero through a particular budget added to the loss function L.

Weight

Weight
Kept Weight W

Pruned Weight Pruned W

Training

Pruning

Weight h(Weight) W

W

Pruned W

Training

Effective Pruning
Kept Weight

Pruned Weight
W

Magnitude Pruning Our method

End of the trainingAn additional fine-tuning is needed

1

2

3

1

2

3

Figure 4.1: Comparison of our method and magnitude pruning. Magnitude
pruning does not include any prior on weights during the initial training phase
and needs an additional fine-tuning procedure. Our method embeds a saliency
measure based on the weight magnitude in the reparametrisation and does not
require fine-tuning. Best viewed in colour.

Our proposed framework allows for joint optimisation of the network
weights and topology. On the one hand, it prevents situations where, be-
cause of excessively pruning a layer, the output from layer ℓ of the network
is no longer transmitted to layer ℓ + 1, a scenario we refer to as discon-
nections. These disconnections can lead to degenerate networks with an
irrecoverable performance drop. Due to these disconnections, the network
output becomes entirely uncorrelated with the input, and it becomes im-
possible to update the weights located upstream of this disconnection. On
the other hand, our framework allows reaching a targeted pruning budget
in a more convenient way than ℓ1 regularisation (see section 4.4.4). Our
reparametrisation also helps to minimise the performance drop between
the original and the pruned surrogate networks by maintaining competi-
tive performances without fine-tuning. Learning the weight values and the

92

CONTENTS

network topology only requires one step that achieves pruning as a part of
network design. This step zeroes out the targeted number of connections
by constraining their reparametrised weights to vanish.

4.2.1 Weight Reparametrisation
We consider the original network f as a stack of L layers. The global
expression of f can be recursively defined by the application of the layer ℓ
to the output of the layer ℓ− 1. Without a loss of generality, we omit the
bias for clarity. This expression is shown in equation (4.12).

f(x) = gL

(
wL · gL−1(wL−1 · gL−2 . . . w2 · g1(w1 · x))

)
, (4.12)

with gℓ being a nonlinear activation associated to ℓ ∈ {1, . . . , L} and {wℓ}ℓ

denoting a set of weight tensors where each tensor is associated with a
specific layer ℓ in the network. Keeping the same topology but changing
the values of the weight, we now consider the surrogate network f̂ with
weights {ŵℓ}ℓ. Equation (4.12) can be rewriten as equation (4.13). The
activation function and the topology of f and f̂ are the same. Only the
weights are updated.

f̂(x) = gL

(
ŵL · gL−1(ŵL−1 · gL−2 . . . ŵ2 · g1(ŵ1 · x))

)
. (4.13)

In the above equation, ŵℓ is referred to as apparent weight tensor, which is
a reparametrisation of wℓ that includes a prior on its saliency. An apparent
weight ŵℓ of f̂ is derived from a latent weight wℓ by applying the following
reparametrisation:

ŵℓ = wℓ ⊙ ht(wℓ), (4.14)

with ht being the reparametrisation function and t its temperature param-
eter (see equation (4.19)). Here, ⊙ represents the Hadamard product. It
means that it is element-wise, and every single weight has its own repara-
metrisation. This reparametrisation function enforces the prior that the
smallest weights should be removed from the network and acts as a sur-
rogate ℓ0 norm for the budget loss (see section 4.2.2). In order to achieve
this objective, ht should exhibit four properties:

1. ∀x ∈ R, 0 ≤ ht(x) ≤ 1

2. ht(x) ∈ C1 on R
93

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

3. ht(x) = ht(−x)

4. ∀a, ε ∈ R+∗, ∃ t ∈ R+∗ | ht(x) ≤ ε, x ∈ [−a, a]

First Property - Constrained Image

∀x ∈ R, 0 ≤ ht(x) ≤ 1 (4.15)

There should not be any co-adaptation between the weights and their re-
parametrisation. In other words, the reparametrisation function should
only act as a means to select or not the weight. It should not act as a
scaling factor for the latent weight and scale it so that the apparent weight
becomes larger than the latent weight. Constraining the image prevents
the value of the weights from increasing rapidly to compensate for the re-
moval of the smallest weights. Finally, the apparent weights should have
the same sign as the latent weights. That is why the image of R by ht

should be the segment [0, 1].

Second Property - Differentiability

ht(x) ∈ C1 on R (4.16)

Our method should fit in the backpropagation framework [169]. Since the
optimisation will be achieved by gradient descent, the reparametrisation
function should be differentiable to ensure a computable gradient.

Third Property - Symmetry

ht(x) = ht(−x) (4.17)

The reparametrisation function should not induce any bias toward the pos-
itive or negative weights so that only their magnitudes matter. It implies
that the reparametrisation function should be symmetric.

Fourth Property - Upper Bounded Segment

94

CONTENTS

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0
h t

(x
)

t=
1 n = 2

n = 4
n = 8
n = 10
n = 20
n = 30

(a) ht with t = 1 and varying n

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

h t
(x

)
n

=
2 t = 0.01

t = 0.1
t = 1
t = 10
t = 100

(b) ht with n = 2 and varying t

Figure 4.2: Reparametrisation function ht with varying temperature parameter
t and power n. t controls the width of the pit, and n controls the steepness of
the slope.

∀a, ε ∈ R+∗, ∃ t ∈ R+∗ | ht(x) ≤ ε, x ∈ [−a, a] (4.18)

The last property ensures the existence of a temperature parameter t, which
allows upper-bounding the response of ht on any interval for any arbitrary
ε. More formally, for any arbitrarily large a and arbitrarily small ε, it exists
a temperature t which guarantees that ht(x) is smaller than ε, provided
that x is in the segment [−a, a]. Hence, ht acts as a band-stop filter, elim-
inating the smallest weights where the parameter t controls the width of
that filter. Figure 4.2b shows the impact of t on the shape of the function,
more precisely on the width of its pit, when the expression of ht is set using
equation (4.20).

Weight distribution varies tremendously from one layer to another. In
order to match a specific budget (see section 4.2.2), the width of the stop-
band, controlled by t, is tuned according to the weight distribution of each
layer. The manual setting of this parameter is non-trivial and cumbersome,
so in practice, t is learned as a part of gradient descent on a layer-by-layer
basis.

Considering the aforementioned four properties of ht, a simple choice
of that function is:

h̃t(x) = exp
− 1

(tx)n

, n ∈ 2N, (4.19)

95

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

where n controls the crispness of h̃t. Here and in what follows, h̃t denotes
the expression of equation (4.19) for the reparametrisation function. The
exponent n is not considered as a parameter of ht (or h̃t) since we use a
fixed value for our experiments (section 4.4), whereas t is a learnt parame-
ter and varies from one layer to another. Figure 4.2a shows the impact of
n on the general sharpness of the function. Although the function whose
expression is given in equation (4.19) satisfies the four above properties, in
practice, h̃t suffers from numerical instability as it generates Not a Number
(NaN) outputs in most of the widely used deep learning frameworks. Due
to the way backpropagation works, a single NaN in a weight tensor makes
the whole optimisation process for the entire network no longer possible.
We consider instead a stabilised variant with similar behaviour, as equa-
tion (4.19), that still satisfies the four above properties. This numerically
stable variant is defined as:

ht(x) = C1

exp
− 1

(tx)n + 1

− C2

, (4.20)

with C1 = 1
1−e−1 and C2 = e−1. In what follows, we use the expression of

equation (4.20) for the reparametrisation function ht, whereas h̃t refers to
the expression of equation (4.19), which is its numerically unstable version.

The addition of the scalar value 1 at the denominator in equation (4.20)
is a way to achieve numerical stability. In equation (4.19), the denomina-
tor (tx)n has the potential to approach very small values that result in
numerical instabilities, leading to NaN outputs. The addition of 1 to the
denominator makes the function numerically stable and avoids producing
NaN outputs. This solution is favoured over adding a small value, such
as an arbitrarily small ε, as the latter requires careful consideration of its
magnitude and may result in either dramatic alterations to the shape of
the function or continued numerical instability if not carefully chosen. The
addition of the value 1 to the denominator provides a straightforward and
sufficient mean to stabilise the function. Constants C1 and C2 are intro-
duced to compensate for the slight alterations to the shape of the function
caused by the addition of 1 to the denominator, and thus, to ensure that
the first property (equation (4.15)) is satisfied. Although both h̃t and ht

satisfy the four properties, they do not have the exact same shapes, as
illustrated in figure (4.3).

96

CONTENTS

3 2 1 0 1 2 3
x

0.0

0.2

0.4

0.6

0.8

1.0

h t
(x

)
&

h t
(x

)
n

=
4,

t=
1

ht(x)
ht(x)

Figure 4.3: The unstable reparametrisation function h̃t and its stable alterna-
tive ht, with t = 1 and n = 4 for both functions.

In the next sections, the application of function ht to a multi-dimensional
tensor is element-wise. Consequently ht(z) denotes the tensor whose en-
tries are the result of applying ht to each one of the corresponding entries
of z.

4.2.2 Budget Loss
Most of the traditional pruning methods in deep learning do not explicitly
incorporate the targeted weight budget during optimisation. The amount
of weights pruned is typically enforced post-training, which may lead to
suboptimal results compared to methods that consider the weight budget
during optimisation. Our method introduces a budget loss, in addition to
the main task loss, that drives the network to match and satisfy a given
weight budget during the training process. Consequently, the trained net-
work can be pruned to the desired pruning rate with a marginal loss in
performance without fine-tuning.

The considered budget is weight-based and should quantify the tar-
geted fraction of active connections in the network. To build the budget
loss, we first introduce a cost function that quantifies the number of ac-
tive connections in the network. Let C({w1, . . . , wL}) be the observed cost
associated to a neural network and Ctarget the targeted one. Ctarget is the
number of connections that should be active at the end of the training
procedure. The budget loss is defined as

97

4.2. PRUNING WITH WEIGHT REPARAMETRISATION AND BUDGET LOSS

Lbudget =
(
C({w1, . . . , wL})− Ctarget

)2
. (4.21)

This budget loss is combined with the main task loss (a classification loss
in our experiments - see section 4.4). The budget loss Lbudget is quadratic
in order to ensure the minimisation of the difference between the observed
and the targeted costs. For better conditioning of this combination, we
normalise the budget loss by Cinitial. The latter corresponds to the cost of
the original unpruned network, which is set in practice to the number of
its parameters (see also section 4.4). Hence, equation (4.21) is updated as:

Lbudget =
C({w1, . . . , wL})− Ctarget

Cinitial

2

. (4.22)

Finally, the two losses are combined together via a strictly positive mix-
ing hyperparameter λ that controls the relative importance of the budget
loss Lbudget compared to the main task loss Ltask, leading to

L = Ltask + λ · Lbudget. (4.23)

Ideally, the budget of a neural network could be evaluated as the num-
ber of multiply-add operations, often referred to as FLOPs or MACs1,
needed for a forward pass or through the ℓ0 norm of its weights. However,
in their basic form, neither are known to be differentiable and, therefore,
cannot be used in a gradient-based optimisation. In order to circumvent
these limitations, we use our weight reparametrisation as a surrogate mea-
sure of ℓ0, and we define the cost function as in equation (4.24).

C({w1, . . . , wL}) =
L∑

ℓ=1

νℓ∑
i=1

ht(wℓi). (4.24)

1The number of MAC operations or FLOPs for a layer cannot be fully determined by
its number of parameters since it is heavily dependent on the input size. More details are
given in appendix A.1

98

CONTENTS

conv1
conv2

conv3
conv4

conv5
conv6

conv7
conv8

conv9
conv10

conv11

conv12

conv13

fc1 fc2 fc3

10
4

10
5

10
6

10
7

10
8

N
um

be
r o

f p
ar

am
et

er
s

in
 la

ye
r

(a) Number of parameters

conv1
conv2

conv3
conv4

conv5
conv6

conv7
conv8

conv9
conv10

conv11

conv12

conv13

fc1 fc2 fc3
10

8

10
7

10
6

10
5

10
4

N
or

m
al

iz
at

io
n

va
lu

e
pe

r l
ay

er

(b) Normalisation factor

Figure 4.4: Log-scale plot of number of parameters and normalisation factor per
layer for a VGG16 network. The significant differences in terms of the number
of parameters yields dramatically different normalisation factors. Some of them
are 4 orders of magnitude apart, and all of them are vanishingly small compared
to a common main task loss value.

One may argue that the cost should be normalised layer-wise and, there-
fore, that the right-hand term of equation (4.24) should be written as

L∑
ℓ=1

νℓ∑
i=1

ht(wℓi)

νℓ

However, the number of elements in a layer greatly varies from one to
another (as displayed in figure 4.4). As a result, the budget loss relative im-
portance would vary from one layer to another. More importantly, the op-
timisation process would have less incentive to introduce sparsity in larger
layers since their normalisation factor would make the budget loss negligi-
ble compared to other layers or the main task loss. This is critical since the
large layers are generally the ones where the highest pruning rates can be
achieved [177]. Regarding the aforementioned reasons, a better alternative
is to normalise by the initial cost Cinitial, as done in equation (4.22).

4.3 Method and Algorithm Overview
Our method is a combination of a weight reparametrisation and a budget
loss, both described in the previous sections. The two are combined in a

99

4.3. METHOD AND ALGORITHM OVERVIEW

global method that can be used in a standard training procedure using gra-
dient descent. Once the neural network trained using the method detailed
in section 4.2, we proceed to prune the smallest weights, w.r.t. their mag-
nitude, to match and enforce the predetermined targeted budget. During
this stage, we set the smallest weights to zero until the budget requirement
is met. This process is referred to as effective pruning.

In sections 4.4.2 to 4.4.5 our results are obtained after following this
procedure, which is described in algorithm 2. In other words, the network
is first trained with our reparametrisation and our budget loss, then the
effective pruning step is applied, and finally, the performance is evaluated.
In section 4.4.6, we assess the performance of our method with an already
trained and pruned initialisation. In this precise setup, since the initialisa-
tion is already pruned to match the targeted budget, the effective pruning
step is not needed and thus not applied.

Algorithm 2 Our training procedure
Require: Dataset D ⊂ X × Y , network f , weights θ, number of epochs

E, mixing coefficient λ, learning rate η, pruning rate p
for t = 1 to E do

for each (X, y) ∈ D do
L = Ltask(y, f(X, θt)) + λ · Lp

budget(θt) {Compute the loss: task loss
and budget loss}
θt+1 = θt − η∇θL {Backpropagate the loss and update the weights}

end for
end for
return Trained network f
Perform effective pruning on the weights θ: set to 0 the smallest p% of
the weights w ∈ θ
return Trained and pruned network f

The reader can grasp a better understanding of the key differences of
our method compared to the standard pruning pipeline that applies to
most pruning methods, not only magnitude pruning method, by looking
at figure 4.5. It highlights the fact that the targeted pruning rate is taken
into account from the beginning thanks to the budget loss, and therefore,
the network does not need a fine-tuning step after the effective pruning
step. On the contrary, the standard pruning pipeline applies the pruning

100

CONTENTS

Our Pipeline

Train Effective
Pruning

Pruning
rate target

(a) Our Pipeline

Standard Pruning Pipeline

Train Pruning
criterion FinetuneEffective

pruning

Pruning
rate target

(b) Standard Pruning Pipeline

Figure 4.5: Principle scheme of our pruning pipeline and the standard prun-
ing pipeline. With our pruning pipeline, the targeted pruning rate that will be
enforced during the effective pruning step, is taken into account from the be-
ginning. Thus, our method does not need a fine-tuning step. In contrary, the
standard pruning pipeline applies the pruning criterion and the effective pruning
after the initial training. This results in a drop in performance that needs to be
compensated for with fine-tuning.

criterion and the effective pruning after the initial training. This results
in a drop in performance that needs to be compensated for with fine-tuning.

4.4 Experiments
In this section, we will study the effectiveness of our method for compress-
ing Convolutional Neural Networks image classification models, as well
as its impact on accuracy. To that extent, we will review the impact of
both our reparametrisation and our budget loss. For this purpose, we use
three reference databases in the field of computer vision: CIFAR-10 [162],
CIFAR-100 [162], and TinyImageNet [104], presented in section 2.5. We
will evaluate the impact of our method on several neural network architec-
tures: VGG16 [175], Conv4 [43], ResNet18, and ResNet20 [67], introduced
in section 2.4.3.

4.4.1 Experimental Setup
Performances of our method are evaluated on CIFAR-10 and CIFAR-100
with Conv4, VGG16 and ResNet20. On TinyImageNet, we evaluate our
method on ResNet18. We compare our method against magnitude prun-
ing [59]. The key differences between our method and magnitude pruning

101

4.4. EXPERIMENTS

are the following: (i) our method uses a budget loss to encourage spar-
sity, which takes into account the final pruning rate from the beginning of
the training process and (ii) our method does not require fine-tuning after
pruning. Because of the latter, we compare our method against magnitude
pruning with and without fine-tuning. Both methods share the following
setup: networks are trained during 300 epochs with an initial learning rate
of 0.1. A Reduce On Plateau policy is applied to the learning rate: if the
validation accuracy is not improving for 10 epochs in a row, then the learn-
ing rate is decreased by a factor of 0.3. A weight decay is applied on the
weights with a penalisation factor of 5×10−5. This value is lower than the
more conventional value of 1× 10−4, because we want some weights to be
able to drift away from the origin, and therefore, escape from the pit of ht.
An Early Stopping policy was used to stop the training prematurely if no
improvement in the test accuracy is observed in 60 epochs. To keep the
comparison fair, for magnitude pruning, the 300 epochs are split into two
phases: the first 150 epochs are dedicated to the training of the network,
and the last 150 epochs are used for fine-tuning the pruned network. In the
fine-tuning phase, the learning rate is divided by 100 for better convergence.

4.4.2 Performances

Results are reported on figures 4.6 to 4.8. In these figures, our method
(denoted Ours) is compared to magnitude pruning with and without fine-
tuning (denoted MP w/ FT and MP w/o FT, respectively). All three
methods are evaluated on the test set of the dataset once the network has
been pruned up to the pruning rate indicated on the x-axis. The test ac-
curacy is reported on the y-axis as a float between 0 and 1 (0 being all
images wrongly classified and 1 being all images correctly classified). Each
solid line representing a method is the mean of 5 independent runs. The
coloured area surrounding the solid line represents the standard deviation.
In addition to the three methods, the dashed lines represent the perfor-
mances of an unpruned network trained without weight reparametrisation
and budget loss (denoted baseline) and the accuracy of our method before
the effective pruning (denoted Ours (pre pruning)), i.e. before we set the
smallest weight, w.r.t. their magnitude, to zero. Sub-figures (c) and (d)
of figures 4.6 to 4.8. represents the number of epochs (y-axis) needed to
obtain the best model for each method, depending on the pruning rate

102

CONTENTS

(x-axis).

Overall, our method performs consistently better than magnitude prun-
ing without fine-tuning (MP w/o FT) and, for almost all pruning rates,
better than magnitude pruning with fine-tuning (MP w/ FT) on the CIFAR-
10 and CIFAR-100 datasets. In particular, our method significantly out-
performs magnitude pruning in both setups (with and without fine-tuning)
for Conv4 networks (cf. figure 4.6a). For the VGG16 network, we observe
the same trend, although the difference is less significant. For ResNet20,
magnitude pruning slightly overtakes our method on CIFAR-100 for high
pruning rates (more than 90%). Figures 4.6c, 4.6d, 4.7c, 4.7d, 4.8c and 4.8d
show that our method requires an equivalent number of epochs compared to
magnitude pruning for a higher level of performance (i.e. a higher test ac-
curacy). Magnitude pruning requires fewer epochs than our method, only
at high pruning rates (more than 90%). On TinyImageNet (figure 4.9),
our method outperforms magnitude pruning with and without fine-tuning
including at very high pruning rates (95%). In all scenarios (figures 4.6
to 4.9), our method produces much more stable results, and variations
from one run to another are significantly smaller than the ones in magni-
tude pruning. Indeed, the combination of the reparametrisation and the
budget loss acts, on the one hand, as a regulariser and, on the other hand,
helps to prepare the network for the effective pruning step.

4.4.3 Optimal Value of λ

Our method relies on a budget loss whose relative importance compared
to the main task loss is controlled by a parameter λ (cf. equation (4.23)).
The choice of this parameter is crucial to ensure a good tradeoff between
(i) adhering to the budget constraint, which ensures that the weights set to
zero during the effective pruning step are already vanishingly small if the
constraint is satisfied. This implies that zeroing these weights will have a
minimal impact on performance; and (ii) the optimisation of the main task
loss, which directly impacts the final performance. The achieved budget
as a function of the parameter λ is shown for different pruning rates in
figures 4.10a to 4.10c. In these figures, the achieved budget is computed as
the sum of the weight reparametrisations divided by the number of weights
in the original network.

103

4.4. EXPERIMENTS

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.2

0.4

0.6

0.8

1.0

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(a) Conv4 - CIFAR-10

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(b) Conv4 - CIFAR-100

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

50

100

150

200

250

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(c) Conv4 - CIFAR-10 (Number of
Epochs)

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

100

125

150

175

200

225

250

275

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(d) Conv4 - CIFAR-100 (Number of
Epochs)

Figure 4.6: Performances comparison of our method (Ours) against magnitude
pruning without (MP w/o FT) and with fine-tuning (MP w/ FT) with a Conv4
network on CIFAR-10 and CIFAR-100 datasets, for different pruning rates. Fig-
ure 4.6a and figure 4.6b show the testing accuracy of the model and figure 4.6c
and figure 4.6d the number of epochs needed to obtain the best model. Best
viewed in colours.

104

CONTENTS

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.70

0.75

0.80

0.85

0.90

0.95

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(a) VGG16 - CIFAR-10

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(b) VGG16 - CIFAR-100

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

80

100

120

140

160

180

200

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(c) VGG16 - CIFAR-10 (Number of
Epochs)

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

100

120

140

160

180

200

220

240

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(d) VGG16 - CIFAR-100 (Number of
Epochs)

Figure 4.7: Performances comparison of our method (Ours) against magnitude
pruning with fine-tuning (MP+FT) with a VGG16 network on CIFAR-10 and
CIFAR-100 datasets, for different pruning rates. Figure 4.7a and figure 4.7b show
the testing accuracy of the model and figure 4.7c and figure 4.7d the number of
epochs needed to obtain the best model. Best viewed in colours.

105

4.4. EXPERIMENTS

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.2

0.4

0.6

0.8

te
st

 a
cc

ur
ac

y
Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(a) ResNet20 - CIFAR-10

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y Ours
Ours (pre pruning)
MP w/o FT
Baseline
MP w/ FT

(b) ResNet20 - CIFAR-100

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

50

75

100

125

150

175

200

225

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(c) ResNet20 - CIFAR-10 (Number of
Epochs)

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

80

100

120

140

160

180

200

220

Nu
m

be
r o

f E
po

ch
s t

o
Be

st
 M

od
el

Ours
MP+FT

(d) ResNet20 - CIFAR-100 (Number of
Epochs)

Figure 4.8: Performances comparison of our method (Ours) against magnitude
pruning with fine-tuning (MP+FT) with a ResNet20 network on CIFAR-10 and
CIFAR-100 datasets, for different pruning rates. Figure 4.8a and figure 4.8b show
the testing accuracy of the model and figure 4.8c and figure 4.8d the number of
epochs needed to obtain the best model. Best viewed in colours.

0.70 0.75 0.80 0.85 0.90 0.95
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

Ours
MP w/o FT
MP w/ FT
Baseline
Ours (pre-pruning)

Figure 4.9: Performances comparison of our method (Ours) against magnitude
pruning with fine-tuning (MP+FT) with a ResNet18 network on TinyImageNet
dataset, for different pruning rates.

106

CONTENTS

Pruning Rate (%) λ Achieved Budget (%) Test Accuracy (post pruning) (%)

90

0.005 5.25 ± 0.69 85.83 ± 0.83

0.5 8.06 ± 0.19 86.34 ± 0.64

5 9.93 ± 0.03 85.82 ± 0.74

50 10.00 ± 0.01 86.52 ± 0.46

500 10.03 ± 0.00 85.55 ± 0.49

95

0.005 5.22 ± 0.73 86.27 ± 0.32

0.5 4.33 ± 0.41 85.66 ± 0.74

5 4.85 ± 0.19 86.11 ± 0.48

50 5.03 ± 0.02 85.37 ± 0.37

500 5.00 ± 0.00 10.00 ± 0.00

99

0.005 4.60 ± 0.29 40.52 ± 5.27

0.5 3.69 ± 0.38 42.45 ± 9.02

5 1.89 ± 0.45 76.85 ± 6.34

50 2.09 ± 0.15 10.00 ± 0.00

500 2.28 ± 0.01 10.00 ± 0.00

Table 4.1: Impact of the parameter λ on the achieved budget and the post-
pruning test accuracy of the model for a Conv4 network on the CIFAR-10 dataset
for various pruning rates. Although a high value of λ ensures the targeted budget
is reached, it also leads to a lower test accuracy when the pruning rate increases.

For low pruning rates (figure 4.10a), a relatively low value of λ does
not guarantee adherence to the budget constraint and the final network
has a smaller achieved budget than the targeted one. Similarly, for higher
pruning rates (figure 4.10c), a low value of λ results in a budget in excess
compared to the targeted one. In both cases, the performances of networks
trained with a low value of λ are subpar compared to higher values, as
reported in table 4.1. In contrast to low values of λ, high values might
lay too much emphasis on the budget loss, and the network performances
are negatively impacted, even though the budget is satisfied or almost
satisfied. This is especially the case for a pruning rate of 95% associated
with λ = 500 and also for a pruning rate of 99% for values of λ ≥ 50.
Following the abovementioned observations, we set the value of λ to 5 for
all the experiments. This value strikes the best balance between the two
objectives: budget loss and main task loss. Note that various scheduling for
λ have been considered, but they do not significantly improve performance
(see appendix A.2).

107

4.4. EXPERIMENTS

0.005 0.5 5.0 50.00

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f I
ni

tia
l B

ud
ge

t

target budget: 10%
achieved budget

(a) Pruning 90% of the weights

0.005 0.5 5.0 50.00

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f I
ni

tia
l B

ud
ge

t
target budget: 5%
achieved budget

(b) Pruning 95% of the weights

0.005 0.5 5.0 50.00

2

4

6

8

10

Pe
rc

en
ta

ge
 o

f I
ni

tia
l B

ud
ge

t

target budget: 1%
achieved budget

(c) Pruning 99% of the weights

Figure 4.10: Impact of the parameter λ on the achieved final budget for a Conv4
network on CIFAR-10 dataset, for various pruning rates. A too-small value of λ
does not make the actual budget match the desired budget. The actual budget is
either too small (figure 4.10a) or too high (figure 4.10c) compared to the target,
depending on the applied pruning rate.

108

CONTENTS

4.4.4 Validation of the Budget Loss
In order to establish the importance and the effectiveness of the budget loss
in our method, we present in this section the results of a comparative ex-
perimental analysis with alternative variants. Specifically, we investigated
the impact of the budget loss by comparing it with two other variants: (i)
a variant where the budget loss is removed, and (ii) a variant where the
budget loss is replaced with a regularisation loss based on the ℓ1 norm of
the network weights. In order to remove the budget loss, the value of λ
is set to zero 0 in equation (4.23). In the second variant, we varied the
mixing coefficient λ between 0.1 and 100. Considering the same issue of
loss conditioning as in section 4.2.2, the ℓ1 norm is divided by the total
number of parameters, denoted N , before being added to the global loss.
This specific global loss is expressed as:

L = Ltask + λ · 1
N

L∑
ℓ=1
||wℓ||1 (4.25)

Where || . ||1 represents the ℓ1. Values of N for most of the used archi-
tectures are reported in table 2.1.

In both variants, the reparametrisation is kept in order to isolate the im-
pact of the budget loss. We evaluated the performance of our approach and
the two variants on the CIFAR-10 and CIFAR-100 datasets using Conv4,
VGG16, and ResNet20 networks. The results are presented in figures 4.11
to 4.13. In the figures mentioned above, the variant without the budget
loss is denoted w/o budget, and the variant with a ℓ1 regularisation loss is
referred to as ℓ1 reg.. The results denoted w/ budget represents our method
in the same setup as in section 4.4.2.

Removing the budget loss (variant (i) - w/o budget) negatively im-
pacts the network performances. The test accuracy is systematically lower
than the one obtained with the budget loss. This is particularly visible
in figures 4.11b and 4.13b. Removing the budget loss does not push the
optimisation to introduce sparsity, let alone to respect the targeted budget.
Since sparsity was not introduced beforehand, the effective pruning step
has a negative impact on the network performance. Indeed, the latter was
not trained with a prior on either targeted sparsity or targeted budget,
embedded in the loss.

109

4.4. EXPERIMENTS

Replacing the budget loss with a ℓ1 regularisation loss (variant (ii) -
ℓ1 reg.) also impacts negatively the performance, with the exception of
the ResNet20 network (figure 4.12). Although performances are generally
worse than our method (w/ budget), results indicate that the mixing co-
efficient λ has major importance. Indeed, the ℓ1 regularisation does not
target a precise budget, however, it still helps optimisation to introduce
sparsity in the network. Thus, for certain pruning rates, the variant (ii) can
exhibit better results than our method (especially visible on figures 4.12a
and 4.12b). Nevertheless, the choice of λ is critical and not trivial. Because
of the absence of a budget loss, the optimisation does not take any targeted
level of sparsity into account. The tradeoff between optimising the main
task loss and the ℓ1 regularisation loss is controlled only by the parameter
λ, which makes it difficult to find a single value suited for a large range
of pruning rates, networks and datasets. Since variant (ii) does not target
any specific sparsity, in figures 4.11 to 4.13, we vary the pruning rate to
examine the performance of trained networks at various sparsity levels.

In contrast, our method is able to achieve good performance across
multiple and diverse conditions, without the need to try different values
of λ. Experiments presented in this section reveal that the budget loss
is a critical component of the method to train networks and prune them
while introducing a minimal impact on the performance if no fine-tuning is
applied. While the ℓ1 regularisation loss may achieve superior performance
in certain cases, our method is simpler to implement since it does need to
search for a value of λ per architecture, and more robust in its applicability
across various scenarios.

4.4.5 Validation of the Reparametrisation
The proposed method comprises two primary components: budget loss and
weight reparametrization. The previous section establishes the significance
of the budget loss in achieving optimal performance. In this section, we
study the impact of incorporating weight reparametrisation. To establish
the necessity of weight reparametrisation, we compare our approach with a
variant where the budget loss is applied but the weight reparametrisation
is not. This variant is denoted budget only in the following. The objective
of this variant and the comparison is to isolate the impact of weight repara-
metrization. The budget loss is evaluated in the same way as described in

110

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(a) Conv4 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(b) Conv4 CIFAR-100

Figure 4.11: Comparison of our method and its variant without the budget
loss. The experimental results are referred to as ℓ1 reg., wherein the budget
loss is replaced by a ℓ1 regularisation loss on the network weights. The mixing
coefficient λ is varied from 0.1 to 100, depending on the experiment. w/o budget
corresponds to the absence of the budget loss (this is equivalent to λ = 0). On
the other hand, w/ budget corresponds to our method, with the same setup as
described in section 4.4.2. Results are presented for a Conv4 network, trained on
CIFAR-10 (figure 4.11a) and CIFAR-100 (figure 4.11b). Best viewed in colours.

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(a) ResNet20 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(b) ResNet20 CIFAR-100

Figure 4.12: Comparison of our method and its variant without the budget
loss. The experimental results are referred to as ℓ1 reg., wherein the budget
loss is replaced by a ℓ1 regularisation loss on the network weights. The mixing
coefficient λ is varied from 0.1 to 100, depending on the experiment. w/o budget
corresponds to the absence of the budget loss (this is equivalent to λ = 0).
On the other hand, w/ budget corresponds to our method, with the same setup
as described in section 4.4.2. Results are presented for a ResNet20 network,
trained on CIFAR-10 (figure 4.12a) and CIFAR-100 (figure 4.12b). Best viewed
in colours.

111

4.4. EXPERIMENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(a) VGG16 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

w/o budget
w/ budget
baseline
Ours (pre-pruning)
L1 reg., = 0.1
L1 reg., = 1
L1 reg., = 10
L1 reg., = 100

(b) VGG16 CIFAR-100

Figure 4.13: Comparison of our method and its variant without the budget
loss. The experimental results are referred to as ℓ1 reg., wherein the budget
loss is replaced by a ℓ1 regularisation loss on the network weights. The mixing
coefficient λ is varied from 0.1 to 100, depending on the experiment. w/o budget
corresponds to the absence of the budget loss (this is equivalent to λ = 0). On
the other hand, w/ budget corresponds to our method, with the same setup as
described in section 4.4.2. Results are presented for a VGG16 network, trained on
CIFAR-10 (figure 4.13a) and CIFAR-100 (figure 4.13b). Best viewed in colours.

section 4.2.2. Note that in the budget only variant, the budget evaluation
uses our reparametrisation function as a surrogate ℓ0 norm but the weights
used to produce the network output are the standard weights w, not the
reparametrised weights ŵ.

We evaluate the performance of our method and the budget only variant
on Conv4, ResNet20, and VGG16 networks using CIFAR-10 and CIFAR-
100 datasets (see figures 4.14 to 4.16). Both the proposed approach and
budget only variant are trained with the same hyperparameters, namely, the
learning rate, weight decay, number of epochs and the Reduce on Plateau
policy for the learning rate. For the budget only variant, we perform ex-
periments by varying the mixing coefficient λ from 0.5 to 500. The per-
formances did not vary significantly w.r.t. λ, suggesting that the mixing
coefficient does not have a significant impact on the performance. There-
fore, in order to ensure the clarity of figures 4.14 to 4.16, we only display
the results for λ = 5.

Figures 4.14 to 4.16 present the results of the performance compar-
ison. Our method is referred to as budget + reparam and is evaluated
after pruning, whereas the budget only variant results are presented both
before and after pruning. On Conv4 and VGG16 (figures 4.14 and 4.16,

112

CONTENTS

Dataset Network Pruning Rate (%) Achieved Budget (%)

CIFAR-10

Conv4
90 9.99 ± 0.00

95 4.97 ± 0.01

99 0.98 ± 0.00

ResNet20
90 9.83 ± 0.02

95 4.88 ± 0.01

99 0.98 ± 0.00

VGG16
90 10.00 ± 0.00

95 5.00 ± 0.00

99 1.00 ± 0.00

CIFAR-100

Conv4
90 9.94 ± 0.02

95 4.91 ± 0.02

99 0.98 ± 0.00

ResNet20
90 9.84 ± 0.02

95 4.91 ± 0.01

99 1.00 ± 0.00

VGG16
90 10.00 ± 0.00

95 5.00 ± 0.00

99 1.00 ± 0.00

Table 4.2: Achieved budget for the budget only variant. Results are presented
for λ = 5. Across all experiments, the achieved budget matches closely the
targeted budget, which is computed as (1−pruning rate)×100 and is expressed
in percent.

respectively), our method performs on par with the budget only variant
before pruning while being already pruned, up to very high pruning rates
(more than 98%). On the contrary, and even for ResNet20, the budget
only post-pruning variant performs poorly. The budget only variant per-
formance is massively impaired by the effective pruning step, even though
the budget is thoroughly respected (table 4.2). In comparison, our method
performs much better than the latter when effective pruning is applied to
both methods. The budget loss alone enforces a stricter adherence to the
targeted budget (table 4.2), however, the lack of reparametrisation fails to
prepare the network for the effective pruning step. Indeed, weights are not
soft-pruned and the network is not prepared for sparsity.

The results presented in this comparison and the ones of section 4.2.2
show that both components of our method are of crucial importance. In

113

4.4. EXPERIMENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
te

st
 a

cc
ur

ac
y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(a) Conv4 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(b) Conv4 CIFAR-100

Figure 4.14: Comparison of our method and its variant without the repara-
metrization on Conv4, evaluated on CIFAR-10 and CIFAR-100. Our method
(budget + reparam) has similar performance to the budget only variant before
pruning, whereas our method, is already pruned. Once pruned, the budget only
variant is significantly impaired.

particular, the reparametrization allows for a considerably better general-
ization of the network after pruning, thus enabling a much higher level of
performance. Sections 4.4.4 and 4.4.5 provide empirical evidence that no
component of our method can be removed without significant impairment
of the performance, and therefore, they function in synergy.

4.4.6 Tuned Initialisation
In the previous sections, weights were initialised with the standard Kaim-
ing initialisation scheme [66] (see appendix A.3). In this section we study
an alternative initialisation scheme: we initialise the weights of the network
with trained and pruned weights. These weights are obtained by training
the network in its standard configuration (i.e. without reparametrisation
and budget loss) up to convergence and then the weights are pruned with
magnitude pruning at a specified pruning rate. In other words, our method
is used to fine-tune the weights of a trained and pruned network. This
fine-tuning setup is of particular interest since the major deep learning
frameworks [147, 1] provides pretrained weights for various architectures
[154] but it is up to the end user to prune and fine-tune them according to
their needs.

We compare the performances of a network trained in a standard way,
then pruned with magnitude pruning and finally fine-tuned with two meth-

114

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(a) ResNet20 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(b) ResNet20 CIFAR-100

Figure 4.15: Comparison of our method and its variant without the repara-
metrization on ResNet20, evaluated on CIFAR-10 and CIFAR-100. Due to the
small size of the network (see table 2.1), the pruned version of our method (bud-
get + reparam) and the budget only variant cannot keep up with the unpruned
version. Nevertheless, if considering the pruned versions, our method scores bet-
ter, thanks to the addition of the reparametrization.

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(a) VGG16 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

te
st

 a
cc

ur
ac

y

budget + reparam (Ours)
budget only =5 (post-pruning))
budget only =5 (pre-pruning)

(b) VGG16 CIFAR-100

Figure 4.16: Comparison of our method and its variant without the
reparametrizationn VGG16, evaluated on CIFAR-10 and CIFAR-100. Our me-
thod (budget + reparam) has similar performance to the budget only variant
before pruning, whereas our method, is already pruned. Once pruned, the bud-
get only variant is significantly impaired.

115

4.4. EXPERIMENTS

ods: Our method and standard fine-tuning [59]. Put simply, this section
describes a process where the initial weights of the network are not ran-
domly initialised, but are trained and pruned weights. Note that the prun-
ing definitely zeroes out the smallest magnitude weights and they are not
reactivated during the fine-tuning. The latter only tunes the remaining un-
pruned weights. This setup is evaluated on Conv4, ResNet20 and VGG16
for both CIFAR-10 and CIFAR-100. The results are shown in figures 4.17
to 4.19. First, a network is trained for 150 epochs on the main classification
task. Then it is pruned up to a specified pruning rate. The pruning crite-
rion used is the magnitude of the weights where weights with the smallest
absolute values are removed in an unstructured way. The pruned network
is then fine-tuned for 300 epochs with an early stopping criterion based on
the validation accuracy. The training is stopped prematurely if the val-
idation accuracy does not improve for 30 epochs. When fine-tuned with
our methods, the pruned network is treated as the original network. The
initial latent weights of our method (w) are the ones of the trained and
pruned network. They are reparametrised as in 4.2.1.

Except for results with the Conv4 networks, fine-tuning a network with
our method overperforms the conventional fine-tuning method by a com-
fortable margin on ResNet20 across all pruning rates (figure 4.18) and
VGG16 (figure 4.19) for pruning rates higher than 96%. At initialisation,
the weights of the network are already pruned to the targeted pruning rate.
With the enforcement of the budget through budget loss, the remaining
unpruned weights cannot dwindle to zero, hence preserving them during
the fine-tuning process. In contrast, in the absence of budget loss, the re-
maining weight values are not restricted, allowing them to possibly vanish,
resulting in further a drop in network capacity with weights of vanishingly
small magnitude. This behaviour is highlighted by the following additional
experimental results displayed in figure 4.20. This experiment involves a
comparison between two initial setups: one where the initial weights are
only fine-tuned and another where they are fine-tuned and then pruned.
The outcomes demonstrate that initialising a network with weights that
are fine-tuned and then pruned beforehand yields significantly superior re-
sults. Moreover, the networks produced by fine-tuning with our method are
much more consistent from one run to another. This is illustrated by the
standard deviation being so small that the coloured area around the solid
line is barely visible on the graphs. This is not the case for conventional
fine-tuning where performances vary greatly from one run to another. This

116

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
te

st
 a

cc
ur

ac
y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(a) Conv4 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(b) Conv4 CIFAR-100

Figure 4.17: Fine-tuning of a Conv4 network pruned by magnitude pruning
(MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets for various pruning
rates. Conventional (MP w/ FT) fine-tuning is compared to fine-tuning with our
method (pruned+FT (w/ our method)). Our method, described in section 4.3, is
shown for comparison purposes (Ours). On this network, our method performs
better than other approaches. Fine-tuning the network with our method provides
better results than fine-tuning it with a conventional method.

is especially visible in figure 4.17a.

Although the method proposed in this chapter was not initially in-
tended for fine-tuning networks, it demonstrates superior performance com-
pared to widely-used standard fine-tuning techniques. Notably, it exhibits
enhanced recovery from the performance decline that occurs following
pruning. Furthermore, the performance consistency of networks fine-tuned
with our method is significantly higher across multiple runs in compari-
son to networks generated by traditional fine-tuning methods. The slight
variation observed in the results indicates increased robustness against the
inherent randomness of the optimization process. Consequently, the final
performance is less dependent on specific initializations, batch orders, or
data augmentation seeds than with standard fine-tuning approaches.

4.5 Conclusion
This chapter introduces a novel approach for pruning neural networks,
which addresses the limitations of conventional pruning pipelines. The lat-
ter usually apply a pruning criterion and prune networks after an initial
training phase without taking into account the target pruning rate. This

117

4.5. CONCLUSION

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(a) ResNet20 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(b) ResNet20 CIFAR-100

Figure 4.18: Fine-tuning of a ResNet20 network pruned by magnitude pruning
(MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets with various pruning
rates. Conventional (MP w/ FT) fine-tuning is compared to fine-tuning with our
method (pruned+FT (w/ our method)). Our method, described in section 4.3,
is shown for comparison purposes (Ours). On this network, fine-tuning with our
method considerably outperforms other approaches.

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

0.925

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(a) VGG16 CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.40

0.45

0.50

0.55

0.60

0.65

0.70

te
st

 a
cc

ur
ac

y

pruned+FT (w/ our method)
MP w/o FT
Ours
MP (w/ FT)

(b) VGG16 CIFAR-100

Figure 4.19: Fine-tuning of a ResNet20 network pruned by magnitude pruning
(MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets with various pruning
rates. Conventional (MP w/ FT) fine-tuning is compared to fine-tuning with our
method (pruned+FT (w/ our method)). Our method, described in section 4.3,
is shown for comparison purposes (Ours). On this network, fine-tuning with our
method performs on par with other methods up to 95% of pruning. For higher
pruning rates, it outperforms other approaches.

118

CONTENTS

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(a) Conv4 - CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(b) Conv4 - CIFAR-100

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(c) ResNet20 - CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.05

0.10

0.15

0.20

0.25

0.30

0.35

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(d) ResNet20 - CIFAR-100

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(e) VGG16 - CIFAR-10

0.86 0.88 0.90 0.92 0.94 0.96 0.98
pruning rate

0.40

0.45

0.50

0.55

0.60

0.65

te
st

 a
cc

ur
ac

y

unpruned initialisation
pruned initialisation

(f) VGG16 - CIFAR-100

Figure 4.20: Comparison of fine-tuning a network whose initialisation has been
trained from scratch (denoted unpruned initialisation) or trained from scratch
and pruned with magnitude pruning (denoted pruned initialisation). Fine-tuning
a pruned initialisation always outperforms fine-tuning an unpruned initialisation
in the tested configurations.

119

4.5. CONCLUSION

often requires a fine-tuning phase to restore the accuracy loss that follows
pruning and the subsequent topology alteration. In contrast, the proposed
method does not require fine-tuning to achieve superior performance com-
pared to state-of-the-art magnitude pruning methods. Experimental eval-
uations conducted on various datasets and networks commonly used for
image classification benchmarking validate this claim.

Our approach described in this chapter consists of two key components:
a budget loss and a weight reparametrisation function. Comparative anal-
yses demonstrate the importance of both components, as variants without
either the budget loss or the reparametrisation, result in inferior perfor-
mance compared to the full-fledged method. While the proposed method
is designed to avoid computationally intensive fine-tuning, it can still be
used for fine-tuning and performs comparatively better than standard fine-
tuning.

The proposed method of this chapter focuses on weight reparametri-
sation with budget loss to enhance the network robustness to pruning:
compared to a network trained in the absence of such strategies, our use of
reparametrisation and budget loss substantially mitigates the performance
degradation typically induced by pruning. This forces less useful weights
to take small values, binding the weight value to the network topology. As
such, the optimisation process learns both the weights and topology under
the hypothesis that weights with smaller magnitudes will be removed. This
method highlights the importance of determining the optimal topology in
addition to the optimal weights, achieved in this chapter with the prior
that magnitude is a saliency factor for weight relevance in the topology.

Notwithstanding the improved performance of the proposed method
compared to magnitude pruning, it still suffers from some limitations.
Namely, the value of the weight saliency is bound to the reparametrisa-
tion which is in turn bound to the weight value. As a consequence, the
weight saliency is only determined by the latter. The resulting limitation
is that the current method cannot treat weights with the same value (or
similar values) differently. Put simply, the topology is bound to the mag-
nitude of the weights, but not their position in the network.

In the next chapter, the introduced approach seeks to determine the
optimal topology without training the weights and without binding their

120

CONTENTS

saliency (or relevance) to their magnitude. The saliency of the initial
weights is determined by a trained mask. In other words, the next me-
thod aims at determining the best topology, given a set of fixed weights.

121

4.5. CONCLUSION

122

Chapter 5

Effective Subnetworks
Extraction without Weight
Training

123

124

Contents
5.1 Introduction and Related Work 127

5.1.1 Pruning at initialisation 128
5.1.2 Lottery Tickets . 131
5.1.3 Existence of effective subnetworks 133
5.1.4 Subnetwork topology extraction 133

5.2 Contributions . 135
5.3 Extracting Effective Subnetworks with

Gumbel-Softmax . 136
5.3.1 Stochastic Weight Sampling 136
5.3.2 Smart Weight Rescaling 143
5.3.3 Freezing the Topology via Thresholding 145

5.4 Method Overview and Algorithm 146
5.5 Experiments . 148

5.5.1 Experimental Setup 148
5.5.2 Performances . 150
5.5.3 Validation of the Weight Rescaling Mechanism . . . 156
5.5.4 Effect of the Learning Rate on Training Performances 157
5.5.5 Post Training Pruning Rate Adjustment 159

5.6 Conclusion . 160

Chapter Abstract
This chapter focuses on the development of lightweight and

efficient neural networks for image classification tasks, partic-
ularly in visual category recognition. These lightweight net-
works are increasingly important for intelligent embedded sys-
tems with limited computational and energy resources. Pruning
techniques are popular in designing lightweight networks, but
they require weight training, pruning and fine-tuning. These

125

CONTENTS

weights are pruned based on criteria or saliency indicators that
are learned alongside the weights.

This chapter introduces approaches that extract effective
subnetworks by pruning large untrained networks, without weight
training. A new method, named Arbitrarily Shifted Log Para-
metrisation (ASLP), is proposed to extract effective subnet-
works from a large, untrained deep neural network using the
Straight Through Gumbel-Softmax (STGS) technique, which
enables the training of stochastic discrete variables while still
preserving differentiability. Additionally, a weight rescaling me-
chanism, referred to as Smart Rescale (SR), is introduced. It
rescales the weight distributions of the selected subnetworks and
as a result, improves the performance and reduces the number
of epochs required for training as shown later in experiments.
Finally, we introduce a novel pruning strategy that automati-
cally finds the pruning rate yielding the best performances once
the training is completed, eliminating the need to iteratively
search and strictly enforce a specific pruning rate throughout
the training.

The ASLP method, which integrates the STGS sampling
technique and the SR mechanism, is evaluated through experi-
ments on CIFAR-10, CIFAR-100, and TinyImageNet datasets.
In most cases, ASLP outperforms other state-of-the-art meth-
ods and consistently surpasses them for various network archi-
tectures. Further experiments show that the sparsity of the
networks extracted with ASLP can be increased with minimal
impact on the performance. These experiments also show that
our method can accept a broad range of learning rates and is
robust to extremely large learning rate values. Additionally,
the experiments show the effectiveness of the SR mechanism
regarding performance improvement and the reduction in the
number of epochs needed to reach convergence.

This chapter presents work that has resulted in the publication
of the following conference article:

• Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi,
and Alice Lebois. Extracting effective subnetworks with
Gumbel-Softmax. In 2022 IEEE International Conference

126

CONTENTS

on Image Processing, ICIP 2022, Bordeaux, France, 16-19
October 2022, pages 931–935. IEEE, 2022.

Our code for the ASLP method, as well as the reimplementation
of the comparative methods used in this chapter, is publicly
available at:

• https://github.com/N0ciple/ASLP

5.1 Introduction and Related Work
In this chapter, we tackle the challenge of extracting lightweight and ef-
fective subnetworks from large, untrained neural networks. The goal is to
obtain subnetworks that have both a smaller number of parameters com-
pared to the original network and compelling performances. Contrary to
chapter 4 where the focus was on soft-pruning weights based on their value
during the training, the method presented in this chapter relies on training
latent masks. The latter represents a parametrisation of the probabilities
for the weights to be selected or not in a sampled topology. The method
described in chapter 4 binds the saliency of the weights to their magnitude
in a fully deterministic way. In contrast, the method introduced in this
chapter is, on the one hand, stochastic, and on the other hand, decorre-
lating the pruning criterion from the weight value by relying on a separate
latent mask to represent the weight saliency.

This method exhibits several advantages over the method presented in
the previous chapter: First, as we just mentioned, the pruning criterion
is decorrelated from the value of the weight, offering a different approach
where the weight value is not the only parameter determining its saliency.
Indeed, two weights with the same value can have different probabilities
of being selected since their associated latent mask can evolve differently.
Second, this method does not train the weights but selects the best subset
of network connections to minimise the loss used to train the network. Con-
sequently, this method is perfectly suited for applications where training
the weight might not be possible and activating or deactivating a weight
is the only option. Finally, from a global standpoint, this method pro-
vides a new path to neural network training that does not rely on weight
training, but rather on topology selection through the same widely spread
gradient-based optimisation framework used by standard training. The
following sections provide an overview of the related works on pruning at

127

https://github.com/N0ciple/ASLP

5.1. INTRODUCTION AND RELATED WORK

initialisation, Lottery Tickets, effective subnetwork existence and extrac-
tion, followed by the contributions of this chapter.

5.1.1 Pruning at initialisation

In general, extracting a lightweight subnetwork is still a challenging prob-
lem [46] and is computationally demanding as this amounts to full training
of large networks (until convergence) prior to their pruning. Instead of
pruning the network after an initial training phase, existing alternatives
approach this problem by pruning the network weights just after their ini-
tialisation and before training [107, 196, 186]. The resulting sparse network
is then trained after this initial pruning step, as shown in figure 5.1.

Initialise
weights Train Prune Fine-tune

Initialise
weights Prune Train

Standard train - prune - finetune pipeline

Pruning at initialisation pipeline

Figure 5.1: Comparison of a standard train-prune-finetune pipeline and the
prune at initialisation pipeline. In the latter, the network is pruned before train-
ing.

Single-Shot Network Pruning (SNIP) was introduced by Lee et al. in
[107]. The authors devise a new criterion to determine the importance of
a connection even before the start of training. The criterion, called con-
nection sensitivity, is based on the influence of a connection on the loss
function. The more a connection can change the loss function output, the
more important it is considered to be. Considering a weight wj, the au-
thors define its sensitivity as:

128

CONTENTS

sj =

∣∣∣∣∣∣∂L∂cj

∣∣∣∣∣∣
N∑

k=1

∣∣∣∣∣ ∂L∂ck

∣∣∣∣∣
(5.1)

where N is the number of connections in the network and cj in an auxiliary
variable introduced by the authors that represents the presence (cj = 1)
or absence (cj = 0) of the weight wj in the network. The connections are
then sorted by their connection sensitivity score and the top-k connections
are kept to match a given pruning rate.

GraSP (Gradient Signal Preservation) [196] is a refinement of SNIP
that takes into account the gradient flow. The authors seek to preserve the
latter in order to allow large gradients in the subsequent network training.
The scores of the weights are defined in a vectorised way as :

S(−w) = −w⊙Hg (5.2)

where ⊙ is the Hadamard product, w is the vector of weights, H is the
Hessian matrix of the loss function with respect to the weights and g is the
gradient of the loss function with respect to the weights. Considering how
the score is defined in equation (5.2), pruning is achieved by removing the
top-k weights that reduce the gradient flow to match a given pruning rate.

Both SNIP and GraSP require a single mini-batch to compute their
respective scores. Another pruning method known as SynFlow [186] is
data-free and seeks to preserve synaptic flow, defined subsequently, in a
given network in order to prevent layer collapse. The latter is defined by
the authors as the complete pruning of a layer, which effectively renders
the network untrainable. For a given layer ℓ, the synaptic flow score of the
weights θℓ of a layer ℓ is defined as :

SSF(wℓ) =
∂

1T

 L∏
ℓ=1
|wℓ|

 1


∂ wℓ

⊙wℓ (5.3)

129

5.1. INTRODUCTION AND RELATED WORK

where L is the total number of layers in the network and 1 is the all ones
vector. Contrary to previous methods, namely SNIP [107] and GraSP
[196], SynFlow does not necessitate any data to compute the scores. These
scores are computed and updated iteratively for 100 steps, regardless of
the targeted dataset or batch size. Since it prevents layer collapse, network
pruning with SynFlow can reach higher pruning rates than with SNIP or
GraSP (see figure 5.2).

M
ax C

om
pression

Figure 5.2: Synflow accuracy compared to SNIP and GraSP for different prun-
ing rates. Methods are benchmarked on VGG16 trained on CIFAR-100. Illus-
tration taken from [186]

These aforementioned methods allow pruning a network at initialisa-
tion but still require training the weights. Moreover, while these methods
outperform the basic benchmark of random pruning, their accuracy is still
below the one of post-training magnitude pruning [46]. In contrast to these
works, our proposed solution in this chapter identifies effective subnetworks
by training only their topology and without any weight tuning. Our so-
lution yields sparse and lightweight subnetworks that achieve compelling
performances and does not need further weight fine-tuning.

130

CONTENTS

5.1.2 Lottery Tickets

As discussed in chapters 3 and 4, pruning methods, either structured or
unstructured, are particularly successful at simplifying large neural net-
works, and seek to remove connections with the least perceptible impact
on classification accuracy. Structured pruning consists in jointly removing
groups of weights, entire channels or subnetworks [110, 124], whereas un-
structured pruning aims at removing weights individually [59, 60].

Unstructured pruning has witnessed a recent surge in interest in the
wake of the LTH [43]; an empirical study in [43] demonstrates that large
pre-trained networks encompass lightweight subnetworks, referred to as
LTs, which can achieve comparable performance to the original large net-
works in a similar number of epochs when trained in isolation with initial
weights taken from the large network. To identify these LTs, the large net-
work is trained until convergence, followed by pruning the smallest weights
based on their magnitude. The remaining weights are then rewound to
their original value, that is, the value they had before the training of the
large network began. This resulting subnetwork is known as a Lottery
Ticket. Frankle and Carbin also leveraged iterative magnitude pruning to
identify LTs, where the pruning rate is gradually increased during training
until it reaches the desired pruning rate [43].

Rewinding the weights to their original values does not allow to find LT
for larger architectures, as noted by [123, 47]. Frankle and Carbin proposed
a weaker version of the LTH where the weight values are not reset to their
original values, but instead to an early stage of the training corresponding
to the network reaching a stable state, described in [45]. Figure 5.3 pro-
vides conceptual illustrations of the different existing methods devised by
Frankle and Carbin to find a LT.

Another study [123] pushes that finding further and concludes that only
the topology of these subnetworks is actually important in order to reach
compelling performances. Liu et al. [123] point out that the weights of
the LTs are not important and can be randomly initialised, provided that
the optimisation procedure is carefully designed: Liu et al. used a common
SGD optimiser with momentum instead of using an Adam optimiser [100]
with a low learning rate as Frankle and Carbin did in [43], suggesting that
using an Adam optimiser might hinder the training of randomly initialised

131

5.1. INTRODUCTION AND RELATED WORK

Initial weights w0 trained weights wn
magnitude

pruning
weights

rewinded to w0

Initial weights w0 trained weights wn
magnitude

pruning
weights

rewinded to wk
weights at early

stage wk

Initial weights w0
weights at
stage wk

pruned weight

magnitude
pruning

weights at
stage w2k

weights at
stage w3k ...

trained and iteratively
pruned weights

magnitude
pruning

repeat

weights
rewinded to w0

LT with original
values

Lottery
Tickets

LT with early
stage values

LT with iterative
magnitude pruning

Figure 5.3: Conceptual illustration of the different processes to obtain a Lottery
Ticket: reinitialising the weights to their original values with one-shot magnitude
pruning (LT with original values), reinitialising the weights to their early stage
values with one-shot magnitude pruning (LT with early stage values) and iterative
magnitude pruning (LT with iterative magnitude pruning). Best viewed in colour.

132

CONTENTS

LT.

The aforementioned works [43, 45, 123] focus on finding a Lottery Ticket
that still needs to be trained in order to reach a satisfying level of per-
formance. In contrast, our proposed method extracts a subnetwork that
already achieves compelling performances without any weight training.

5.1.3 Existence of effective subnetworks

At first, it seems counterintuitive that there exists a subnetwork in a large
network, that can achieve compelling performances without any weight
training. This has been first conjectured in [157] as the Strong Lottery
Ticket Hypothesis. A few theoretical analyses provide evidence that such
subnetworks do exist. [132] demonstrate that a neural network of width
d and depth l can be approximated by pruning a randomly initialised one
that is a factor O(d4l2) wider and twice as deep. The upper bound on
the network width has later been improved by [145] to O(d2 log(dl)) under
the assumption of a hyperbolic weight distribution. This upper bound has
eventually been refined to O(d log(dl)) by [148] for a broad class of weight
distributions, including the uniform one which is widely used for weight
initialisation [66].

5.1.4 Subnetwork topology extraction

Although the existence of effective subnetworks with untrained weights has
been established, no constructive proof has been provided in order to iden-
tify them. In this context, several methods proposed heuristics to extract
the lightweight and efficient subnetwork from a large untrained network
[215, 157].

Supermark is a method introduced by Zhou et al. in [215] which is
the first attempt to extract efficient subnetworks from a large untrained
network using stochastic mask training. Each weight of the network is
stochastically sampled following a Bernoulli distribution parametrised by
a latent variable m. To that extent, weights are reparametrised as follows:

133

5.1. INTRODUCTION AND RELATED WORK

ŵ = w × Bern(σ(m)) (5.4)

where ŵ is the effective weight (also referred to as the apparent weight
in chapter 4) used in the network, wi is the original frozen weight and
σ the sigmoid function. At each iteration, a random variable is sampled
from the Bernoulli distribution parametrised by m, which either selects or
prunes the corresponding weight. The sampling being nondifferentiable, it
is not possible to train directly m with SGD. Instead, the authors pro-
posed to use the STE [9], a technique that approximates the gradient in
the backward pass with a continuous surrogate function of the forward pass
non-differentiable function. Zhou et al. also introduced a weight rescaling
mechanism, called Dynamic Weight Rescaling (DWR), to mitigate the dis-
ruption of weight statistics due to pruning [66]. More details are given in
sections 5.3.1 and 5.3.2.

During training, weights are frozen and only the masks are allowed to
vary. However, the major drawback of this method resides in the vanish-
ing gradient issue of the sigmoid which makes mask training numerically
challenging. Ramanujan et al. [157] proposed another alternative, enti-
tled Edge-popup, based on binarised saliency indicators learned with STE,
which selects the most prominent weights in the resulting subnetworks.
Each weight wij, corresponding to the connection between neurons i and
j, is associated with a latent saliency indicator sij. During the forward
pass, the weights associated with the top-k saliency indicators are selected
and the others are pruned. Similarly to Supermask, binarised saliency in-
dicators are not differentiable, therefore, the latter is made with STE. The
authors consider the following expression for the weights in the backward
pass:

ŵij = sijwij (5.5)

Edge-popup enforces the pruning rate a priori, thereby determining the
value of k. This value is the same for all the layers, imposing a constant
pruning rate throughout all the layers of the network, which is suboptimal.
Indeed, the optimal pruning rate is layer-dependent and varies from one
layer to another. Moreover, finding the pruning rate giving the highest
performances has to be made through a cumbersome and time-consuming
grid search. Like Supermask, Edge-popup also includes a weight rescaling

134

CONTENTS

mechanism, based on a learnt rescaling factor that rescales the weight dis-
tribution in a layer-wise fashion, subsequently detailed in section 5.3.2.

5.2 Contributions

Considering the limitation of the aforementioned related work, namely, the
challenges in mask training due to the sigmoid mask parametrisation, and
the time-consuming nature of finding the optimal pruning rate, we intro-
duce in this chapter a new stochastic subnetwork selection method based
on Gumbel-Softmax (GS). The latter allows sampling subnetworks whose
weights are the most relevant for classification. The proposed contribution
also relies on a new mask parametrisation, entitled Arbitrarily Shifted Log
Parametrisation (ASLP), that allows better conditioning of the gradient
and thereby mitigates numerical instability during mask optimisation. Be-
sides, when combining ASLP with a learned weight rescaling mechanism,
training is accelerated and the accuracy of the resulting subnetworks im-
proves as shown later in experiments. Our proposed pruning strategy is
designed such that it does not necessitate any prior information regarding
the optimal pruning rate that would yield the best performance. Instead,
it automatically sets the optimal rate, eliminating the need for an exhaus-
tive grid search.

The rest of this chapter is organized as follows: section 5.3 delves
into our proposed method, named Arbitrarily Shifted Log Parametrisa-
tion (ASLP), for extracting efficient subnetworks using Gumbel-Softmax,
including stochastic weight sampling and our weight rescaling approach.
The overall workflow of our proposed method is detailed in section 5.4. In
section 5.5, we share the results of our comprehensive experiments, includ-
ing performance benchmarks, the impact of our weight rescaling approach,
the effect of increasing the pruning rate after training and the impact of the
learning rate on the training convergence speed and final performance. We
conclude the chapter in section 5.6, summarizing our contributions and our
key findings. As we will demonstrate, our new approach overcomes several
of the challenges associated with previous techniques, offering a more effi-
cient and effective way to extract high-performance subnetworks without
weight training.

135

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

5.3 Extracting Effective Subnetworks with
Gumbel-Softmax

Considering the same formalism as in chapter 4, let fθ be a deep neural
network whose weights are defined as θ = {w1, . . . , wL}, with L being its
depth, wℓ ∈ Rdℓ×dℓ−1 its ℓth layer weights, and dℓ the dimension of ℓ. The
output of a given layer ℓ is defined as

zℓ = gℓ(wℓ ⊗ zℓ−1), (5.6)

being gℓ an activation function and ⊗ the usual matrix product. With-
out loss of generality, we omit the bias in the definition of (5.6).

5.3.1 Stochastic Weight Sampling
Given a network fθ, weight pruning consists in removing connections in
the graph of fθ. A node in this graph refers to a neural unit while an
edge corresponds to a cross-layer connection. Pruning is usually obtained
by freezing and zeroing out a subset of weights in θ, and this is achieved
in practice by multiplying wℓ by a binary mask mℓ ∈ {0, 1}dim(wℓ). The
binary entries of mℓ are set depending on whether the underlying layer
connections are kept or removed, so equation (5.6) becomes

zℓ = gℓ((mℓ ⊙wℓ)⊗ zℓ−1). (5.7)

Here ⊙ stands for the element-wise matrix product. In chapter 4, the
effective pruning step was achieved by setting the values of mℓ to zero
or one depending on the magnitude of the weight reparametrisation (see
equation (4.14) and section 4.3). Consequently, the value of the masks mℓ

are only determined by the value of the weights and not the topology of
the network. In this chapter, we propose another approach to obtain the
masks mℓ that is not bound to the value of the weights. In equation (5.7),
the masks mℓ are stochastic and sampled from a Bernoulli distribution.
However, sampling is not a differentiable operation, therefore, optimising

136

CONTENTS

directly mℓ is not possible. To overcome this issue, while still relying on
SGD, the Straight Through Estimator (STE) technique is applied together
with a reparametrisation of the mask.

Straight Through Estimator. Zhou et al. [215] consider a Bernoulli
parametrisation of mℓ in order to sample masks in equation (5.7). Since
sampling is not a differentiable operation, they rely on the STE. It is a
technique developed in [9] that enables the training of neural networks with
discrete activations, such as binary or quantised activations. The technique
involves using a differentiable relaxation to the non-differentiable activa-
tion function during the backward pass, and using the non-differentiable
function in the forward pass. This allows for the use of SGD to optimise
the network, which was previously not possible with discrete activations.
It is worth noting that STE is a heuristic that does not provide the correct
gradient, but it is effective in practice [9].

In order to apply STE to the problem of Bernoulli stochastic mask
sampling, the definition of mℓ is based on another latent parametrisation
m̂ℓ, detailed subsequently, and obtained by applying a sigmoid function
σ(.) to m̂ℓ. This allows optimizing m̂ℓ using gradient descent by consid-
ering the following surrogate of equation (5.7) in the backward pass of the
backpropagation algorithm:

zℓ = gℓ((σ(m̂ℓ)⊙wℓ)⊗ zℓ−1). (5.8)

As a result, although masks mℓ are sampled and thus disconnected from
the computation graph (sampling being not differentiable), their repara-
metrisation m̂ℓ can be updated as if they were used in the computation
graph as shown in equation (5.7).

Gumbel-Softmax. In what follows, we consider an alternative to STE
based on Gumbel-Softmax (GS) [92] that demonstrates better performances
for differentiable categorical sampling, which is the process of randomly se-
lecting a category from a given set of categories, where each category has
a specified probability of being chosen. Gumbel-Softmax is a technique
that can be used to approximate a discrete categorical distribution with a
continuous relaxation. Gumbel-Softmax works by using the Gumbel distri-

137

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

bution [55] to add noise to a categorical distribution and then applying the
Softmax function to obtain a continuous relaxation of the discrete distribu-
tion. The proposed method, dubbed as Straight Through Gumbel-Softmax
(STGS), is based on a variant of Gumbel-Softmax combined with Straight
Through Estimator. In the forward pass, the softmax of GS is replaced by
an argmax operator. Since this operator is not differentiable, the standard
softmax is considered in the backward pass. The argmax operator allows
sampling from a categorical distribution, as the limit of GS (i.e., when its
softmax temperature approaches zero).

Gumbel-Softmax applied to weight sampling. Let z be a cate-
gorical random variable, associated with n-class probability distribution
P = [π1, . . . , πn]. In order to sample in a differentiable manner, the
Gumbel-Softmax estimator takes as an input a vector of log-probabilities

log(P) = [log(π1), . . . , log(πn)] (5.9)

then it disrupts the latter with a random additive noise sampled from
the Gumbel distribution, and finally takes its argmax, yielding a categor-
ical variable. More formally, following [92], the value q of our categorical
variable z is obtained as

q = argmax
k

[log(πk) + gk], (5.10)

with gk being independent and identically distributed samples from the
Gumbel distribution with zero mean and unit variance, denoted G(0, 1).

For mask sampling, only two possible outcomes are considered. Either
the corresponding weight is selected and its mask is set to 1, or it is pruned
from the sampled topology and its mask is set to 0. In what follows, and
unless stated otherwise, we omit ℓ from wℓ and we write it for short as w.
Let wij be the weight associated with the i-th and j-th neurons respectively
belonging to two consecutive layers. Since there are two possible outcomes

138

CONTENTS

for the masks, we define a two-class categorical distribution Pij on {0, 1} as


Pij(z = 1) = πij

1

Pij(z = 0) = πij
2

(5.11)

with, again, πij
1 = pij and pij being the probability to keep the under-

lying connection. Since there are only two mutually exclusive outcomes,
πij

2 = 1 − pij. In other words, keeping the weight wij (or not) in the
sampled topology is a Bernoulli trial with a probability pij. Considering
equation (5.10), a binary mask mij is defined as

mij = 1{qij=1} (5.12)

1{} being the indicator function and following equation (5.10), qij is

qij = argmaxk∈{1,2}
[
log(πij

k) + gij
k

]
(5.13)

with πij
1 = pij and πij

2 = 1 − pij, the probability for a weight to be
selected or not in the sampled topology, respectively.

The proposed STGS algorithm enables the learning of probabilities pij

for each weight wij through SGD. However, optimizing pij (with SGD)
raises a major issue. Since the optimisation is not constrained, pij can take
values larger than 1 or smaller than 0. As a consequence, it could no longer
be interpreted as a probability, moreover, log(pij) and log(1 − pij) would
also be undefined.

On another hand, solving constrained SGD, besides being computation-
ally expensive and challenging, may result in a worse local minimum. In
order to overcome all these issues, one may consider an alternative repara-
metrisation pij = σ(m̂ij), similar to the reparametrisation in [215], with
m̂ij being a latent mask variable and σ the sigmoid function which bounds

139

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

pij in [0, 1]. However, this workaround suffers in practice from numerical
instability in gradient estimation and is also computationally demanding.
Indeed, the combination of the logarithmic and the sigmoid functions leads
to severe numerical instabilities, that necessitate a cumbersome stabilisa-
tion by adding ε to prevent pij and (1− pij) from being to close to 0. The
logarithmic function, which is applied to these quantities, is not defined
on 0 and tends to −∞ at its vicinity. Furthermore, it is important to note
that the above formulation is computationally intensive since it requires
the evaluation of log and exponential for every mask in the network.

Arbitrarily Shifted Log Parametrisation. In order to solve the issues
related to STGS in the context of this chapter, in particular, the need for
numerical stabilisation and computational complexity, another alternative
is to consider the following expressions for log(Pij):

log(Pij) =

 log(pij) = m̂ij

log(1− pij) = log(1− exp(m̂ij))

 (5.14)

and learn the underlying mask m̂ij. However, this reparametrisation is also
flawed in the same way as the aforementioned sigmoid reparametrisation,
namely: numerically unstable and high computational cost, again due to
the combination of logarithmic and exponential functions.

In what follows, we propose an equivalent formulation which turns out
to be highly effective and numerically more stable. Instead of using the
logarithmic probabilities outlined in equation (5.9) as the input for the
STGS that would eventually lead to the formulation of equation (5.14), we
adopt the ensuing expression at the weight level:

m̂ij

0

 (5.15)

Here, the second coefficient of the vector, normally representing log(1−
pij), is set and fixed to 0. It is important to note that this formulation is

140

CONTENTS

not the same as the one of equation (5.9). We interpret the formulation of
equation (5.15) as:

m̂ij

0

 = log
(
Pij(.)

)
+ c =

 log(pij) + c

log(1− pij) + c

 , (5.16)

In the above expression, instead of using log(Pij(.)) as an input for STGS,
we interpret equation (5.9) as log(Pij(.)) + c , which is the input of the
argmax in equation (5.10).

The constant c ∈ R does not need to be known. Adding this constant
ensures that even if m̂ij > 0, we can still interpret pij as a probability with
log(pij) ∈] −∞, 0] ⇔ pij ∈ [0, 1]. This is enforced by setting the second
coefficient of equations (5.15) and (5.16) to zero, rather than computing it
explicitly. Although different, the formulation of equation (5.16) is theo-
retically equivalent to the aforementioned sigmoid reparametrisation (see
equations (5.4) and (5.8)). Indeed, solving the system of equation (5.16)
with respect to m̂ij yields pij = σ(m̂ij) (see proposition 5.3.1).

Proposition 5.3.1 (Formulation equivalence). The formulation in equa-
tion (5.16) is equivalent to defining pij = σ(m̂ij) with σ the sigmoid func-
tion, provided that pij ∈]0, 1[.

Proof. Consider the following system of equations:


m̂ij = log(pij) + c (1)

0 = log(1− pij) + c (2)

Substracting (2) from (1) yields:

(1)− (2)⇔ m̂ij = log
 pij

1− pij



⇔ 1
pij
− 1 = exp(−m̂ij)

141

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

⇔ pij = 1
exp(−m̂ij) + 1

⇔ pij = σ(m̂ij)

Differently put, the formulation in equation (5.16) considers a repara-
metrisation m̂ij = log(pij) + c and log(1 − pij) + c = 0 which is strictly
equivalent to the sigmoid one while being computationally more efficient
and also numerically stable.

Proposition 5.3.1 assumes that pij ∈]0, 1[, which, in practice, is verified.
For the probabilities pij to reach 0 or 1, the masks m̂ij would need to reach
±∞. This scenario cannot happen during training since m̂ij are initialised
to 0 (see section 5.5) and the sigmoid function applied to them makes the
gradients of m̂ij vanishingly small when m̂ij deviate from 0. Because m̂ij

are updated following the SGD algorithm, vanishingly small gradients re-
sult in vanishingly small updates of m̂ij. In practice, it prevents the m̂ij

reaching ±∞ and thus σ(m̂ij) = pij from reaching 0 or 1, which validates
the assumption of proposition 5.3.1 that pij ∈]0, 1[.

A crucial point to consider is that adding any arbitrary constant c to
each coefficient of the log-probability vector does not change the outcome
of Gumbel-Softmax sampling. This is because it does not alter the out-
come of the argmax function, which remains unchanged regardless of the
value of c, provided that the same value c is added to both coefficients,
which is the case in our formulation (c.f. equation (5.16)). The presence of
this constant c, whose value is arbitrary, that shifts the log-probabilities of
our probability parametrisation gives the name of the method: Arbitrarily
Shifted Log Parametrisation.

142

CONTENTS

5.3.2 Smart Weight Rescaling

Subnetwork selection may disrupt the dynamic of the forward pass [66,
157], and thereby requires adapting weights accordingly. [66] establish
that the variance of the initial weight distribution has a critical impact on
the network performances. Since in the context of this chapter, the weights
are not trained, it is all the more important to address this issue. The sam-
pling of the weights alters the original weight distribution and therefore its
statistics.

Dynamic Weight Rescaling (DWR) [215], along with the Scaled Kaim-
ing distribution (SKD) [157], are two recognised strategies for adjusting
the weights of chosen subnetworks to mitigate the aforementioned issue.
Each approach has its limitations, which we address with our proposed
weight rescaling method.

Dynamic Weight Rescaling. The DWR [215] method calculates the
effective pruning rate at each training step on a layer-by-layer basis, re-
ferred to as the observed pruning rate. This is achieved by dividing the
number of active weights in the layer (corresponding to a mask value of 1)
by the total number of weights in the layer. Subsequently, all weights are
rescaled by multiplying them with the inverse of the observed pruning rate.
A drawback of DWR is that it demands the storage of sampled masks and
the calculation of the observed pruning rate at each training step for every
layer in the network. This makes the procedure computationally demand-
ing and increases the memory requirements. Furthermore, the flexibility
and adaptability of the method are limited due to the rescaling being tied
to the pruning rate; there is no guarantee that the inverse of the observed
pruning rate is the optimal factor to prevent changes to the weight distri-
bution statistics. The performance boost attributable to DWR, as noted
by Zhou et al., might be due to the increase of the standard deviation of the
Xavier (or Glorot) initialisation [51] that the author used. Experimentally,
a larger standard deviation improves the performance within the context
of this chapter. Indeed, the Kaiming initialisation1 [67], has a larger stan-
dard deviation than the Xavier initialisation and achieves superior results
[157, 177].

1Kaiming and Glorot initialisation are detailed in appendix A.3

143

5.3. EXTRACTING EFFECTIVE SUBNETWORKS WITH
GUMBEL-SOFTMAX

Scaled Kaiming distribution. The Kaiming initialisation [67] was pre-
sented by Ramanujan et al. in [157]. Similar to DWR, the weights are
rescaled to safeguard the weight statistics from alteration. The rescaling
factor here is the inverse of the square root of the pruning rate. Unlike
DWR, the pruning rate in this method is enforced, not observed, making
it less computationally intensive than DWR. However, it shares the same
limitation as DWR in that the rescaling factor is directly tied to the prun-
ing rate.

Smart Rescale. In what follows, we consider our proposed weight adapta-
tion mechanism, referred to as Smart Rescale (SR). Instead of handcrafting
this rescaling factor proportionally to the pruning rate (as achieved for in-
stance in [215]), SR is learned layerwise and provides an effective (and also
efficient) way to adapt the dynamic of the forward pass without retraining
the entire weights of the selected subnetwork. These localised adjustments
of distributions provide an advantage over the aforementioned methods
that depend on a scaling factor that is reliant on the pruning rate and
which is the same across all layers in the case of the Scaled Kaiming distri-
bution. This flexibility ends up reducing the number of epochs needed to
reach convergence and also improving accuracy (to some extent) as shown
later in section 5.5.

Furthermore, SR improves accuracy as it adjusts the weights to main-
tain the statistics of the distribution of the original network weights, pre-
serving the representative power of the network. Hence, rather than forcing
the weights to follow an arbitrary distribution or scale, they are guided by
the data-driven SR method which results in better performance and re-
duced training time. With SR, the ℓ-th layer network output becomes

zℓ = gℓ(sℓ × (mℓ ⊙wℓ)⊗ zℓ−1), (5.17)

where sℓ refers to the rescaling factor of the ℓ-th layer (see also algorithm 3).
Smart Rescale increases the flexibility of subnetwork selection and adapta-
tion compared to DWR (which is again bound to the pruning rate). More-
over, scaling factors obtained with SR vary smoothly, consequently making
the training more stable with SGD compared to the ones obtained with
DWR which are again inversely proportional to the observed pruning rates,

144

CONTENTS

and changes of the latter are more abrupt due to stochastic mask sampling.

5.3.3 Freezing the Topology via Thresholding
A network trained with ASLP has a stochastic topology that is sampled
at each forward pass. To evaluate such a network, we chose to freeze its
topology so that its outputs and thus performance are deterministic. This
section presents a pruning strategy to evaluate a network trained with our
method on a fixed topology. Once the latent masks m̂ij are trained, a
pruning step is applied to extract a subnetwork from the original heavy
and unpruned network. This pruning fixes the values of the masks mij to
either 0 or 1 (c.f. equation (5.7)), effectively freezing the network topology
which was previously stochastic. This pruning step does not enforce a spe-
cific pruning rate, it is rather based on thresholding the weights probability
of being selected pij. The resulting observed pruning rate is computed as
the fraction of weights whose pij is below the said threshold, denoted τ .
This pruning step can be defined by applying the function ξτ to each mask
m̂ij, and assigning its result to mij, as shown in equation (5.18).

mij ← ξτ(m̂ij) =


1 if pij ≥ τ ⇔ m̂ij ≥ σ−1(τ)

0 otherwise.
(5.18)

where σ−1 is the inverse of the sigmoid function, also known as the logit
function, whose expression is given in equation (5.19).

σ−1(x) = log
(

x

1− x

)
(5.19)

Our pruning strategy seeks to retain the weights that have the highest
probability of being present in the sampled topologies. Specifically, we set
τ so that retained weights must be selected, on average, in at least half the
sampled topologies. This implies that the weight selection probabilities
pij, which are defined as σ(m̂ij), must be greater than or equal to τ = 0.5,
otherwise, the related weight wij is pruned. In other words, the weight

145

5.4. METHOD OVERVIEW AND ALGORITHM

is kept if the binary event of keeping a connection is more likely than its
removal. Since pij is defined as σ(m̂ij), in terms of latent masks, it means
that a weight is kept if its associated latent mask m̂ij ≥ σ−1(0.5) = 0. We
refer to this pruning method as thresholding.

5.4 Method Overview and Algorithm

Our method introduced a new perspective on neural network training.
Rather than relying on the common training of the weights, our focus
is on identifying the optimal topology by selecting a subset of the weights.
This approach delivers an effective sparse subnetwork that demonstrates
compelling performance compared to standard weight training, all with-
out the need for weight training. Such a strategy is particularly beneficial
in scenarios where a lightweight neural network is required due to limited
computing resources or where weight training may not be feasible.

Proceeding with this innovative approach, our method integrates the
Straight Through Gumbel-Softmax sampling technique and the Smart Rescale
mechanism, resulting in a comprehensive method named Arbitrarily Shifted
Log Parametrisation (ASLP). This strategy constructs lightweight neural
networks by sampling topologies from a large, untrained network and learns
the probability of selecting each weight. Probabilities are determined using
Stochastic Gradient Descent in conjunction with a standard loss function,
specifically cross-entropy loss for image classification tasks. The training
procedure for our method is detailed in algorithm 3. Unless stated other-
wise, this procedure is implemented in section 5.5.

The core differences between our approach and standard pruning pipelines
are illustrated in figures 5.4a and 5.4b. As highlighted in figure 5.4a, our
method focuses exclusively on topology selection without weight training,
whereas conventional pruning pipelines rely on weight training and subse-
quent fine-tuning.

146

CONTENTS

(a) Our pruning pipeline (b) Standard pruning pipelines

Figure 5.4: Overview of our pruning pipeline and standard pruning pipelines.
Our pipeline performs topology selection only: weights are not trained. On the
contrary, standard pruning pipelines rely on weight training and fine-tuning.

Algorithm 3 Our training procedure
Require: Dataset D ⊂ X × Y , network f , weights θ, latent masks m̂,

number of epochs n, learning rate η
for t = 1 to n do

for each (X, y) ∈ D do
Forward Pass:

qij ← argmax

m̂ij + gij

0 + g′ij

 {Sample of a topology}

mij ← 1{qij=1} {Give the masks mij their values}
L
(
fθ(X, sℓ(mℓ⊙wℓ)), y

)
{Compute the loss with masked weights and

SR}
Backward pass: {In the backward pass, ∇m̂L is computed as qij is
obtained through a softmax instead of an argmax}
m̂t+1 = m̂t−η∇m̂L {Backpropagate the loss and update the masks}

end for
end for
return Network f with unchanged weights θ and trained latent masks
m̂.

147

5.5. EXPERIMENTS

5.5 Experiments
In this section, we evaluate the efficacy of our proposed method and we
investigate the influence of various parameters and configurations. Sec-
tion 5.5.1 details the experimental setups, section 5.5.2 presents the per-
formances of our method against other state-of-the-art methods, namely
Edge-popup [157] and Supermask [215], both detailed in section 5.1.4. Sec-
tion 5.5.3 validates our weight-rescaling strategy, section 5.5.4 studies the
impact of the learning rate on the performance of our method, and validates
our choice of learning rate. Finally, section 5.5.5 investigates the impact of
imposing a fixed pruning rate after the training and presents experimental
results that support the effectiveness of our thresholding pruning strategy.

5.5.1 Experimental Setup
Our experiments were conducted on the CIFAR-10, CIFAR-100 and Tiny-
ImageNet datasets which are described in section 2.5. Unless stated oth-
erwise, on each table we report the test accuracy evaluated on the test set
of the datasets. This accuracy is given in percentages with the standard
deviation. The latter is given numerically in tables or represented by the
shaded area around curves for figures. Each data point is obtained by
averaging 5 independent runs. The architectures considered are Conv2,
Conv4, Conv6, VGG16, ResNet-20 and ResNet-18, which are presented in
section 2.4.3

In order to demonstrate the efficacy of our method in a standard im-
age classification scenario, we compare our approach with state-of-the-
art methods, specifically Edge-popup [157] and Supermask [215]. We re-
implemented both methods in PyTorch [147] and employed a uniform train-
ing procedure for all methods: networks are trained for 1000 epochs with a
fixed learning rate of 50 (except for Edge-popup, which utilises a learning
rate of 0.1). The learning rate of SR is set to 10−3, and neither weight
decay nor ℓ2 regularisation is applied. This section examines several con-
figurations initially presented in [215], which encompass combinations of
techniques or enhancements employed for method evaluation. The various
techniques include the application of Weight Rescaling (WR), the use of
Signed Constant (SC) weight distribution [215, 157] and data augmenta-
tion.

148

CONTENTS

Weight Rescaling. Each method discussed in this section incorporates
its own weight rescaling technique: Dynamic Weight Rescaling (DWR) for
[215], Scaled Kaiming distribution (SKD) for [157] and Smart Rescale (SR)
for ASLP (Ours). All of these techniques are denoted as WR in this sec-
tion. The three of them have been detailed in section 5.3.2

Signed Constant Distribution. The signed constant distribution was
introduced by [215]. Weights sampled from this distribution can take only
two values: −σ and σ, where σ represents the standard deviation of the
weight tensor upon initialization using the widely adopted Kaiming ini-
tialization [66], which is tailored to initialise weights in such a way that
the variance remains the same across every layer during both forward and
backward passes, especially for neural networks with ReLU activation func-
tions (More details are given in appendix A.3). Zhou et al. report that it
improves performances over the standard weight initialisation scheme.

Data augmentation. Although Zhou et al. [215] did not used any data
augmentation, it is a widely accepted practice in image classification and
is generally applied even if not explicitly mentioned by the authors (for ex-
ample Ramanujan et al. used data augmentation in their code [41] altough
it is not mentioned in the original article [157]). Consequently, we con-
sider two configurations: with and without data augmentation. The data
augmentation we apply has been observed in various state-of-the-art im-
plementations [41, 163, 109] and is the following: first, images are padded
with zeroes, next, a random crop of the original size is extracted from the
padded image. Lastly, a random horizontal flip is performed. An example
of this data augmentation pipeline is displayed in figure 5.5.

original image padding random crop random flip

Data Augmentation Pipeline

Figure 5.5: Data Augmentation pipeline example used for CIFAR-10 and
CIFAR-100.

149

5.5. EXPERIMENTS

Pruning Strategy. To prune the networks trained with our method, we
chose to freeze the topology with our threhsolding pruning strategy, de-
scribed in section 5.3.3, which thresholds the probabilities of selection pij

and consequently the latent masks m̂ij. As a matter of comparison, we
also consider the setting in [215] which is an averaging strategy to evaluate
Supermask performance. It consists in sampling ten different topologies,
yielding effectively 10 different subnetworks. The performances of each
of these subnetworks are evaluated independently giving 10 test accura-
cies that are averaged to obtain the final test accuracy. We refer to this
pruning strategy as averaging. In the Edge-popup method [157], described
in section 5.1.4, the pruning rate (denoted k by the authors) is inher-
ently incorporated with two primary characteristics: (i) the set of pruned
weights is deterministic (the pruned weights are the ones associated with
the bottom-k saliency indicators), and (ii) the fraction of pruned weights
is strictly equal to the predetermined pruning rate. As a result, a distinct
pruning step enforcing the predetermined pruning rate is redundant since
it would not bring any changes to the network structure or the values of
the weights.

5.5.2 Performances

Overall, the analysis of our ASLP method results, presented in tables 5.2
to 5.5, shows that ASLP outperforms both Edge Popup and Supermask
methods on CIFAR-10 and CIFAR-100 datasets, a trend consistent across
all tested networks, including Conv2, Conv4, Conv6, VGG16, and ResNet20.
Notably, our thresholding pruning strategy demonstrated superior perfor-
mance compared to Supermask averaging approach (see section 5.3.3 for
details of both strategies). The thresholding strategy ensures that the
most likely-to-be-selected weights are incorporated into the final frozen
network. It is accomplished by setting a threshold on pij, the probability
for a weight of being selected. Only those weights exceeding this threshold
are preserved, leading to the retention of the most valuable connections
in the network. This approach focuses on the utilisation of high-impact
weights, which contribute to the enhanced performance of the pruned net-
work. Contrastingly, the averaging strategy employed by the Supermask
method [215] takes a different approach. It draws 10 random subnetworks,
each possessing a distinct set of weights. However, this strategy introduces
a risk, as these randomly selected weight sets may contain weights that

150

CONTENTS

contribute minimally to the overall performance of the network. The in-
clusion of such potentially useless weights could reduce the performance of
the pruned network.

Remarkably, for larger networks such as VGG16 and ResNet-20, our
ASLP method employing the thresholding strategy also consistently sur-
passes all other methods (see table 5.4). Nevertheless, a ResNet-18 trained
on TinyImagenet with ASLP is outperformed by its counterpart trained
with Edge-popup (see table 5.5).

We put forth several hypotheses to account for the reduced perfor-
mance. First, the ResNet-18 architecture employed is the standard Py-
Torch implementation [153], designed for the ImageNet dataset [25]. As a
result, it is tailored for 224 × 224 pixel images, while TinyImageNet im-
ages are only 64 × 64 pixels. With a smaller input image size, each pixel
encompasses a larger area of the input space, and an overly large receptive
field for a smaller image like TinyImageNet may lead to the loss of crucial
spatial information. We opted against upscaling TinyImageNet images to
224 × 224 as a preprocessing step in order to prevent an exponential in-
crease in computational cost.

Secondly, the ResNet-18 network is among the largest networks we ex-
amined, having roughly 3 times the number of parameters of a Conv4 net-
work (refer to table 2.1). As a result, there are numerous possible weight
combinations and subnetworks. Viewing ASLP as a Neural Architecture
Search method, the search space for ResNet-18 is considerably larger than
for the Conv{2,4,6} networks. Nevertheless, the number of sampled topolo-
gies is only equal to the product of the number of batches and the number
of epochs during which the network is trained. Table 5.1 presents the de-
tails of 2 setups: ResNet-18 trained on TinyImageNet and Conv4 trained
on CIFAR-10. It shows that the fraction of explored topologies by our
ASLP method is considerably higher for the Conv4 network than for the
ResNet-18 one in the given configurations. The number of explored topolo-
gies might be sufficient to sweep the search space for Conv{2,4,6} networks
and find a compelling and effective subnetwork, but it might not be enough
for a ResNet-18 network.

However, this hypothesis warrants further clarification. Indeed, the
VGG16 network has more parameters than the ResNet-18 (see table 2.1),

151

5.5. EXPERIMENTS

Conv4 & CIFAR-10 ResNet-18 & TinyImageNet

Number of parameters (N) 2,425,930 11,685,608

Train Dataset Size (number or images) 50,000 90,000

Batch Size used for training 256 256

Nb. of batches for 1 epoch 196 352

Nb. of explored topologies in 103 epochs (E) 196,000 352,000

Nb. of possible topologies (P) P = 2N ≈ 5× 10105.86
P = 2N ≈ 5× 10106.54

Fraction of explored topologies (νexp) νConv4
exp = E

P
≈ 10−105.86

νResNet-18
exp = E

P
≈ 10−106.54

Ratio of fractions of explored topologies
νConv4

exp

νResNet-18
exp

≈ 10106.44

Table 5.1: Comparison of the number of explored topologies for the Conv4
and ResNet-18 networks with CIFAR-10 and TinyImageNet, respectively. Since
a new topology is sampled for every batch, the number of explored topologies
(E) is computed as the product of the number of batches and the number of
epochs during which the network is trained (here 103). The number of possible
topologies (P) is computed as the number of possible weight combinations in
the network (2N). The fraction of explored topologies is computed as the ratio
of the fraction of explored topologies for the Conv4 network and the fraction of
explored topologies for the ResNet-18 network. In these experimental setups,
the fraction of explored topologies for the Conv4 network is significantly higher
than the fraction of explored topologies for the ResNet-18 network.

nevertheless, in our experiments, ASLP achieves superior results compared
to other methods on the VGG16 architecture. We suggest the following ex-
planation: First, the CIFAR-10 and CIFAR-100 datasets are simpler data-
sets with fewer classes, compared to TinyImageNet. Secondly, although the
VGG16 has more parameters, it has fewer weights in its fully connected
layers since the datasets it is benchmarked on have fewer classes. Indeed, a
VGG16 network tailored for CIFAR-100 has 51,200 parameters in its last
fully connected layer, whereas a ResNet-18 network designed for TinyIm-
ageNet has 102,400. Thus, the search space for the fully connected part
of the VGG network is significantly smaller than on the ResNet-18 net-
work. Therefore, because of the smaller search space, ASLP finds a more
optimal subset of weights for the last layer of the VGG16 network than
the ResNet-18 one. This final fully connected layer of a neural network
plays a crucial role in determining its overall performance and accuracy in
predicting outcomes.

152

CONTENTS

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 75.70 ± 0.30 75.81 ± 0.69 76.48 ± 0.68 76.92 ± 0.24

ASLP (averaging) 75.42 ± 0.25 75.50 ± 0.56 76.05 ± 0.44 76.44 ± 0.19

[215] (averaging) - - - -

[157] (k = 50%) 74.18 ± 0.76 75.19 ± 0.56 74.51 ± 0.31 75.45 ± 0.44

Conv4

ASLP (thresholding) 83.03 ± 0.31 83.73 ± 0.46 83.59 ± 0.29 84.06 ± 0.31

ASLP (averaging) 82.29 ± 0.25 83.22 ± 0.56 82.79 ± 0.30 83.46 ± 0.49

[215] (averaging) - - - -

[157] (k = 50%) 82.38 ± 0.29 83.61 ± 0.38 81.71 ± 0.59 83.55 ± 0.32

Conv6

ASLP (thresholding) 84.98 ± 0.33 86.49 ± 0.36 85.32 ± 0.27 86.21 ± 0.34

ASLP (averaging) 84.24 ± 0.28 85.67 ± 0.34 84.51 ± 0.35 85.49 ± 0.38

[215] (averaging) - - - -

[157] (k = 50%) 84.67 ± 0.35 85.87 ± 0.13 84.37 ± 0.58 85.84 ± 0.51

(a) With data augmentation.

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 68.24 ± 0.14 68.11 ± 0.64 66.84 ± 0.46 66.05 ± 0.93

ASLP (averaging) 68.09 ± 0.35 67.69 ± 0.52 65.79 ± 0.65 65.35 ± 0.83

[215] (averaging) 67.12 ± 0.25 66.34 ± 0.41 56.71 ± 2.99 56.26 ± 1.64

[157] (k = 50%) - - - -

Conv4

ASLP (thresholding) 71.64 ± 0.36 69.74 ± 1.37 72.85 ± 0.48 72.08 ± 0.62

ASLP (averaging) 70.88 ± 0.47 68.77 ± 1.42 71.82 ± 0.53 71.09 ± 0.69

[215] (averaging) 68.09 ± 0.84 67.48 ± 0.52 58.13 ± 2.39 53.84 ± 5.00

[157] (k = 50%) - - - -

Conv6

ASLP (thresholding) 73.32 ± 0.42 69.83 ± 1.46 76.20 ± 0.91 75.30 ± 0.89

ASLP (averaging) 72.62 ± 0.57 69.53 ± 1.68 75.24 ± 0.69 74.50 ± 0.96

[215] (averaging) 70.71 ± 0.98 69.16 ± 1.92 44.77 ± 17.02 36.59 ± 15.32

[157] (k = 50%) - - - -

(b) Without data augmentation.

Table 5.2: Comparison of ASLP test accuracy against Edge-Popup and Super-
mask [157, 215] on CIFAR-10 using various configurations. We reimplemented
the configurations tested by the authors in their articles. Performances are pre-
sented with (table 5.2a) and without (table 5.2b) data augmentation, Weight
Rescaling (WR), and Signed Constant (SC) weight distribution. A dash denotes
a configuration that was not tested by the authors. Our method performances are
reported for both the thresholding and averaging setups detailed in section 5.3.3.
For Edge-popup, we use the value of k which yeilds the best test accuracy for
Conv{2,4,6}, as reported in [157]. Across all setups, our method ASLP outper-
forms Edge-Popup and Supermask.

153

5.5. EXPERIMENTS

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 38.64 ± 0.92 38.31 ± 0.75 41.81 ± 0.84 42.06 ± 0.76

ASLP (averaging) 38.49 ± 0.61 38.18 ± 0.81 41.12 ± 0.66 41.17 ± 0.54

[215] (averaging) - - - -

[157] (k = 50%) 38.47 ± 0.46 39.83 ± 0.46 38.57 ± 0.59 39.87 ± 0.78

Conv4

ASLP (thresholding) 47.78 ± 1.18 49.33 ± 0.77 50.33 ± 0.39 51.49 ± 0.43

ASLP (averaging) 47.18 ± 1.17 48.78 ± 0.79 49.39 ± 0.30 50.17 ± 0.50

[215] (averaging) - - - -

[157] (k = 50%) 47.75 ± 0.63 50.16 ± 0.47 48.20 ± 0.72 50.02 ± 0.65

Conv6

ASLP (thresholding) 51.09 ± 0.92 53.00 ± 0.52 51.70 ± 0.48 52.85 ± 0.50

ASLP (averaging) 50.22 ± 1.09 51.72 ± 0.73 50.56 ± 0.33 51.59 ± 0.24

[215] (averaging) - - - -

[157] (k = 50%) 51.13 ± 0.39 53.48 ± 0.51 51.06 ± 1.11 54.01 ± 0.35

(a) With data augmentation

∅ SC WR WR+SC

Conv2

ASLP (thresholding) 38.72 ± 0.59 38.64 ± 1.23 42.42 ± 0.30 41.95 ± 0.68

ASLP (averaging) 38.40 ± 0.81 38.71 ± 1.05 41.66 ± 0.39 41.42 ± 0.55

[215] (averaging) 38.09 ± 1.03 37.28 ± 0.47 26.03 ± 2.23 23.49 ± 1.36

[157] (k = 50%) - - - -

Conv4

ASLP (thresholding) 47.56 ± 0.36 49.30 ± 0.54 50.39 ± 0.58 51.16 ± 0.94

ASLP (averaging) 46.89 ± 0.52 48.74 ± 0.47 49.55 ± 0.57 50.23 ± 0.87

[215] (averaging) 45.84 ± 1.01 47.72 ± 0.75 27.70 ± 2.41 27.53 ± 5.20

[157] (k = 50%) - - - -

Conv6

ASLP (thresholding) 51.43 ± 0.41 53.10 ± 0.27 51.52 ± 0.35 53.22 ± 0.54

ASLP (averaging) 50.47 ± 0.42 52.00 ± 0.27 50.38 ± 0.33 51.82 ± 0.34

[215] (averaging) 49.19 ± 0.75 50.66 ± 0.47 2.54 ± 1.63 9.21 ± 5.50

[157] (k = 50%) - - - -

(b) Without data augmentation

Table 5.3: Comparison of ASLP test accuracy against Edge-Popup and Su-
permask [157, 215] on CIFAR-100 using various configurations. We use the
configurations tested by the authors in their articles. Performances are presented
with (table 5.2a) and without (table 5.2b) data augmentation, Weight Rescaling
(WR), and Signed Constant (SC) weight distribution. A dash denotes a con-
figuration that was not tested by the authors. Our method performances are
reported for both the thresholding and averaging setups detailed in section 5.3.3.
For Edge-popup, we use the value of k which yeilds the best test accuracy for
Conv{2,4,6}, as reported in [157]. For smaller networks, ASLP outperforms
the other methods, with the exception of the SC setup for Conv2 and Conv4.
However, for Conv6, ASLP performance is superior when data augmentation is
disabled, while Edge-popup achieves better results with data augmentation en-
abled (except for the WR setup).

154

CONTENTS

Dataset

CIFAR-10 CIFAR-100

ResNet-20

ASLP (thresholding) 81.08 ± 0.50 44.63 ± 0.91

ASLP (averaging) 78.85 ± 0.41 42.91 ± 1.14

[215] (averaging) 69.83 ± 1.20 30.60 ± 0.91

[157] (k = 50%) 75.09 ± 1.41 22.47 ± 1.37

VGG16

ASLP (thresholding) 24.93 ± 0.69 8.66 ± 0.33

ASLP (averaging) 24.93 ± 0.77 8.58 ± 0.32

[215] (averaging) 25.07 ± 0.34 7.97 ± 0.35

[157] (k = 50%) 23.05 ± 0.84 6.65 ± 0.38

Table 5.4: Comparison of ASLP test accuracy against Edge-Popup and Super-
mask [157, 215] on both CIFAR-10 and CIFAR-100 datasets using VGG16 and
ResNet-20 architectures. The results showcase the scenario with data augmen-
tation, Weight Rescaling (WR) and Signed Constant (SC) weight distribution.
Across all datasets and network architectures, ASLP surpasses the comparative
methods in its thresholding configuration, detailed in section 5.3.3.

TinyImageNet

ResNet-18

ASLP (thresholding) 33.56 ± 1.18

ASLP (averaging) 34.16 ± 0.26

[215] (averaging) 34.83 ± 0.46

[157] (k = 50%) 38.00 ± 0.26

Table 5.5: Comparison of ASLP test accuracy against Edge-Popup and Su-
permask [157, 215] on TinyImageNet datasets using ResNet-18 architecture.
The results showcase the scenario with data augmentation, Weight Rescaling
(WR) and Signed Constant (SC) weight distribution. The thresholding and av-
eraging configurations are detailed in section 5.3.3. Edge-popup [157] performs
the best in this scenario.

155

5.5. EXPERIMENTS

Pruning Rate

CIFAR-10 CIFAR-100

Conv2 51.80 ± 0.14 51.90 ± 0.16

Conv4 51.78 ± 0.46 52.83 ± 0.40

Conv6 51.28 ± 0.40 52.15 ± 1.35

ResNet-20 51.63 ± 0.09 52.73 ± 0.28

VGG16 60.81 ± 1.56 60.89 ± 1.04

TinyImageNet

ResNet-18 52.73 ± 0.28

Table 5.6: Comparison of observed pruning rates of the ASLP method across
various neural network architectures and datasets (CIFAR-10 and CIFAR-100)
after applying the thresholding procedure, detailed in section 5.3.3. The results
are presented as mean percentages of pruned weights with their respective stan-
dard deviations, for the setup with data augmentation, Weight Rescaling (WR)
and Signed Constant (SC) weight distribution.

5.5.3 Validation of the Weight Rescaling Mechanism

In tables 5.2 and 5.3, we observe that our weight rescaling technique, enti-
tled Smart Rescale (SR), positively impacts performance, as corroborated
by the increase in test accuracy compared to the baseline (referred to as ∅).
This improvement is consistent across CIFAR-10 and CIFAR-100 datasets,
with and without data augmentation. Besides enhancing accuracy, SR also
contributes to a reduction in the number of epochs necessary for conver-
gence. This observation is supported by figure 5.6, which shows a signifi-
cant decrease in the number of epochs prior to convergence for all tested
architectures and datasets. Networks used in figure 5.6 have been trained
with and without SR using data augmentation in both cases. The total
number of epochs is set to 1,000 and an early stopping policy, described
in section 5.5, is applied. The point of convergence is defined as the mo-
ment when the early stopping policy halts the training process. Again, the
training process is stopped if there is no improvement in the validation ac-
curacy over the last 60 epochs. The reason for the enhanced performance
and reduced training time when using SR can be attributed to its flexibil-
ity. Unlike DWR and SC, which impose a pruning-bound scaling factor,
SR provides a more flexible approach, permitting an adaptation of weight
distributions for each layer individually. The layer-wise adaptation allows
for limiting the exhaustive search of topology (and thereby reducing the
training time) by enabling a slight adjustment of the weight distribution.

156

CONTENTS

Besides improving performances and reducing the number of epochs
prior to convergence, SR is also an efficient alternative to Dynamic Weight
Rescaling (DWR) [215]. DWR requires rectifying weights layerwise using
the inverse of the observed pruning rates. In order to find the observed
pruning rate for each layer, it is necessary to store the sampled masks and
compute their active fraction. These layerwise evaluations introduce a sub-
stantial overhead at each training epoch. On the other hand, SR involves
straightforward scalar multiplications for each layer, resulting in reduced
complexity. In our experiments, enabling DWR increases the epoch run-
time by 0.2 seconds for Conv4 network, while our SR method increases
it by 0.13 seconds only. This corresponds to a 35% reduction in training
overhead when using SR compared to DWR on a Conv4 network.

Conv2 Conv4 Conv6250

300

350

400

450

500

550

600

Ep
oc

hs

w/ Smart Rescale
w/o Smart Rescale

(a) CIFAR-10

Conv2 Conv4 Conv6250

300

350

400

450

500

550

600

Ep
oc

hs

w/ Smart Rescale
w/o Smart Rescale

(b) CIFAR-100

Figure 5.6: Impact of Smart Rescale (SR) on the number of epochs required
to reach convergence for Conv{2,4,6} on CIFAR-10 and CIFAR-100.

5.5.4 Effect of the Learning Rate on Training Perfor-
mances

The learning rate is an essential hyperparameter for training neural net-
works as it controls the magnitude of the network parameter updates.
When training networks with our ASLP method introduced in this chap-
ter, we set the learning rate to 50. This value is significantly higher than
the learning rates typically used for training neural networks. For instance,
the learning rates to train various baseline models reported in [22], are sev-
eral orders of magnitude lower than 50. An excessively high learning rate
typically results in a diverging loss function resulting in a network failing

157

5.5. EXPERIMENTS

to learn a data representation. However, in the case of ASLP, increasing
the learning rate up to arbitrarily high values does not cause the loss func-
tion to diverge. This section investigates the impact of the learning rate
on the final performances of the network and its convergence speed. It also
provides elements to justify the choice of a learning rate of 50.

Figure 5.7 shows the evolution of the test accuracy for Conv4, VGG16
and ResNet-20 on CIFAR-10, when trained with different learning rates.
The solid line represents the average of five independent runs and the
shaded area of the corresponding colour indicates the standard deviation.
For ease of visualisation and comparison, the curves of test accuracies have
been padded with their last value in order to make them all 1000 epochs
long. Networks have been trained with data augmentation, WR and SC.
Results from figure 5.7 indicate that a high learning rate makes the loss
function and the accuracy converge to their final values more quickly. Net-
works trained with ASLP and a high learning rate (500 or 5000) exhibit
better performance than the ones trained with a lower learning rate (5
or 50) when considering only the first 50 epochs. Nevertheless, the for-
mer are eventually outperformed by the latter if the training is run for
more epochs. Conversely, an excessively low learning rate may not allow
networks to reach satisfying performance levels in a reasonable amount of
time. Our experimental findings indicate that using a scheduling policy on
the learning rate does not improve performance. In other words, opting
for a high learning rate and subsequently decreasing it yields worse results
than maintaining a lower, constant learning rate. We found that a learning
rate of 50 strikes the optimal balance between performance and training
speed. Interestingly, this learning rate remains consistent across all archi-
tectures and datasets.

In standard training, high learning rate values cause the optimisation
to fail because of parameters becoming too large and resulting in NaN val-
ues. However, this is not the case for ASLP which exhibits robustness to
high learning rates. This robustness can be attributed to the fact that, in
ASLP, the trained variables are the latent masks, denoted by m̂, which
can be interpreted as probabilities of selection by applying a sigmoid func-
tion (refer to section 5.3.1 and proposition 5.3.1). The sigmoid function
ensures that: (i) the latent masks cannot take extreme values leading to
NaN because of increasingly small gradients as the latent masks move away
from the origin (see section 5.3.1), and (ii) the sigmoid output is bounded

158

CONTENTS

between 0 and 1 resulting in probabilities of selection close to 0 or 1, but
not altering in a dramatical way the output of the network that otherwise
might also lead to NaN values. Besides, due to the vanishingly small gra-
dients as the masks move further away from the origin, it is practically
impossible to reactivate those weights, let alone reactivate them with a
smaller learning rate. This accounts for the observation that reducing the
learning rate after using a high learning rate does not enhance performance.

0 200 400 600 800 1000
training epoch

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

lr=5
lr=50
lr=500
lr=5000

(a) Conv4

0 200 400 600 800 1000
training epoch

0.12

0.14

0.16

0.18

0.20

0.22

0.24

0.26
te

st
 a

cc
ur

ac
y

lr=5
lr=50
lr=500
lr=5000

(b) VGG16

0 200 400 600 800 1000
training epoch

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

lr=5
lr=50
lr=500
lr=5000

(c) ResNet-20

Figure 5.7: Evolution of the test accuracy for Conv4, VGG16 and ResNet-20
trained with ASLP (with data augmentation, WR and SC) on CIFAR-10 for
various learning rates. A learning rate of 50 yields the optimal balance between
performance and training speed.

5.5.5 Post Training Pruning Rate Adjustment
This section investigates the impact of pruning a network trained with
ASLP to a given pruning rate instead of using the thresholding strategy,
described in section 5.3.3. Unlike Edge-popup [157] where the pruning rate
is a hyperparameter of the method, the proposed ASLP approach does not
enforce a predefined pruning rate during training. Instead, it determines
an optimal subset of weights that enables the network to minimises the loss
function by updating weights probabilities of selection pij through back-
propagation [169]. Rather than being enforced, the pruning rate is observed
and is determined by thresholding the pij following equation (5.18), as ex-
plained in section 5.3.3. The observed pruning rate, which is the fraction of
weights whose probabilities of selection pij are smaller than the threshold τ
in equation (5.18), lies just above 50% for the tested architectures (60% for
VGG16), as reported in table 5.6. However, instead of thresholding the pij

and observing the pruning rate, it can be adjusted by pruning the weights
on the magnitude of their associated latent masks m̂, which enforces the
pruning rate a posteriori by considering the probabilities of selection pij

159

5.6. CONCLUSION

as saliency scores. This is equivalent to changing the value of the thresh-
old τ in equation (5.18) in order to match a given pruning rate. Notably,
Conv{2,4,6} networks trained with ASLP, and pruned a posteriori with
a given pruning rate, achieve compelling performances on CIFAR-10 and
CIFAR-100 datasets for pruning rates up to 85%, whereas their observed
pruning rate is approximately 50% (see figure 5.8 and table 5.6). In the
figure 5.8, the solid line represents the average test accuracy of five inde-
pendent runs and the shaded area represents the standard deviation.

Moreover, the results presented in figure 5.8 provide further support
for the thresholding strategy. This figure displays the test accuracy of
networks trained with ASLP and pruned a posteriori, as described in the
above paragraph, for various pruning rates. Sweeping through the pruning
rate enables us to determine the optimal pruning rate for each network and
dataset combination. The optimal pruning rate is defined as the pruning
rate that yields the highest test accuracy. The results presented in the fig-
ure suggest that the optimal pruning rate for Conv{2,4,6} and ResNet-20
networks lies at 50%, and at 60% for VGG16. These rates are precisely the
observed pruning rates obtained using the ASLP method with the thresh-
olding pruning strategy (see table 5.6). In other words, the ASLP method
together with thresholding pruning automatically determines the optimal
pruning rate for an architecture in one shot without the need for a costly
grid search. This is a significant advantage over the Edge-popup method
[157] which requires a full training for each tested pruning rate.

5.6 Conclusion
In this chapter, we introduced the Arbitrarily Shifted Log Parametrisa-
tion method, which focuses on selecting efficient subnetworks from large,
untrained neural networks through stochastic pruning, without training
the weights. Arbitrarily Shifted Log Parametrisation is a stochastic sub-
network selection method that uses Gumbel-Softmax sampling and a new
mask parametrisation to optimize the subnetwork topology while mitigat-
ing numerical instabilities. Additionally, we presented the Smart Rescale
technique to accelerate training and improve the accuracy of the result-
ing subnetworks. Our experimental results show that ASLP outperforms
closely related state-of-the-art methods, such as Edge-popup [157] and Su-
permask [215], on the CIFAR-10 and CIFAR-100 datasets across various

160

CONTENTS

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pruning rate

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

te
st

 a
cc

ur
ac

y

Conv2
Conv4
Conv6
ResNet-20
VGG16

(a) cifar10

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
pruning rate

0.0

0.1

0.2

0.3

0.4

0.5

te
st

 a
cc

ur
ac

y

Conv2
Conv4
Conv6
ResNet-20
VGG16

(b) cifar100

Figure 5.8: Comparative analysis of ASLP performance for CIFAR-10 and
CIFAR-100 datasets using various network architectures (Conv{2,4,6}, ResNet-
20, and VGG16) at different pruning rates. ASLP performances are evaluated
with WR, SC and data augmentation. Results demonstrate that Conv{2,4,6}
networks maintain strong performance even at higher pruning rates and indicate
that the pruning rate achieved by thresholding is equivalent to the pruning rate
yielding the best test accuracy when sweeping through the possible pruning rates.

network architectures. Our proposed thresholding pruning strategy con-
sistently yields better performance than Supermask averaging approach,
while finding the optimal pruning rate without the need for costly grid-
search, contrary to Edge-popup. Furthermore, our Smart Rescale method
leads to faster convergence and improved accuracy with a lower overhead
compared to other weight-rescaling techniques, such as Dynamic Weight
Rescaling. Arbitrarily Shifted Log Parametrisation also exhibits robustness
to substantially high learning rates, ensuring stable performance across dif-
ferent network architectures and datasets.

All in all, the Arbitrarily Shifted Log Parametrisation method provides
a promising solution for selecting efficient subnetworks from large untrained
neural networks through stochastic pruning, offering improved performance
and faster convergence and a new perspective on neural network training
which focuses on topology selection rather than weight training.

161

5.6. CONCLUSION

162

Chapter 6

Conclusion and
Perspectives

163

164

Contents
6.1 Summary of contributions 165
6.2 Perspectives . 167

6.1 Summary of contributions

In this thesis, we addressed the issue of Deep Neural Networks compres-
sion, specifically from the perspective of pruning, and in particular, we
focused on the problem of performance drop after pruning. We proposed
several solutions to address this issue and ultimately questioned the very
necessity of training the weights. We summarised our contributions in the
following paragraphs.

Budget-aware pruning with weight reparametrisation. Pruning
a network post-training introduces a performance drop that needs to be
compensated for with fine-tuning. In chapter 4 we propose a budget-aware
pruning method based on a weight reparametrisation. Respecting a bud-
get throughout training allows for joint optimisation of the weights and
the topology. Moreover, by controlling the number of parameters that will
remain, it encourages the network not to use more capacity and therefore
weights than what will be allowed once pruning is enforced. To reach this
goal, we introduce in chapter 4 two main components that work together.
On the one hand, a budget regularisation loss that computes the current
weight budget at each training step, guiding the optimisation process to
adhere to it. On the other hand, a weight reparametrisation that embeds
the saliency of the weights in their expression and thereby soft-prune them
during training. Both components are based on our reparametrisation
function that acts as a surrogate ℓ0 norm and have been carefully designed
to be differentiable and numerically stable.

165

6.1. SUMMARY OF CONTRIBUTIONS

We validated our approach by comparing our method against magni-
tude pruning with and without fine-tuning on various datasets and network
architectures. Our method performs consistently better than magnitude
pruning without fine-tuning and, for almost all tested pruning rates, better
than magnitude pruning with fine-tuning. We also validated the relevance
of each component of our method individually in a set of comparative
experiments. Finally, we provided experimental results to discuss and sup-
port the choice of the mixing coefficient and tested our method on trained
and pruned initialisation to show the importance of budget enforcement
and weight reparametrisation, even on already pruned networks when they
undergo fine-tuning.

Pruning without weight training with stochastic sampling. When
it comes to estimating the saliency of weights, the general approach is
to derive an indicator based on their value, such as magnitude pruning
which considers the absolute value of the weight as its saliency. How-
ever, these approaches, by design, cannot treat differently two connections
with the same weight value. In chapter 5, we proposed a new stochas-
tic approach to extract lightweight subnetworks from a large untrained
network. This approach estimates the importance of a weight based on
trained masks which are auxiliary variables that represent their associated
weight saliency and are consequently not bound to the value of the weights.
Furthermore, to also tackle the aforementioned issue with the necessity to
fine-tune pruned networks, the method detailed in chapter 5 does not re-
quire any weight training and relies purely on topology selection through
the optimisation of the auxiliary masks. This method works by stochas-
tically sampling topologies from a large untrained network, based on the
value of the masks, interpreted as probabilities of selection of the corre-
sponding weight. These sampled topologies are evaluated to eventually
identify a subnetwork with compelling performances. The subnetwork is
extracted by pruning the weights of the large network identified as redun-
dant from the larger network. Notably, the performance of this subnetwork
does not experience any drop when compared to the larger network before
pruning. To achieve this, we introduced two components called Arbitrarily
Shifted Log Parametrisation (ASLP) and Smart Rescale (SR). The for-
mer is a computationally efficient and numerically stable technique that
relies on Gumbel-Softmax to train the masks in a stochastic context. The
latter is an efficient learnt-based weight rescaling mechanism that allows
the network to rescale the weight distributions in order to mitigate the

166

CONTENTS

disruption of the weight distribution statistics caused by the pruning. We
also introduce a thresholding strategy responsible for pruning the weights,
that allows to effectively freeze the topology.

We validated our approach by comparing our method against other
state-of-the-art methods on various datasets and network architectures.
Our method performs better than those other methods in most tested sce-
narios, offering higher accuracy. We also provided experimental results to
validate the relevance of our SR mechanism and thresholding strategy, sup-
port our choice of learning rate and finally, show that our method is robust
to modification of the pruning rate post-training. Finally, our code has
been made publicly available 1 and contains the instructions to reproduce
our results as well as a reimplementation of the state-of-the-art method we
benchmark against in PyTorch.

6.2 Perspectives
In this section, we discuss the perspectives and future works that could be
undertaken to improve the methods we proposed in this thesis as well as
push forward the findings we made.

Experimental validation on larger datasets and architectures. In
our experiments, we chose to focus on results reliability and therefore we
chose to run every configuration for every experiment at least 5 times to
average the results and provide their standard deviation. This choice was
made to avoid drawing conclusions based on a single run that could be an
outlier. However, this choice comes at the cost of computational time and
resources, thereby limiting the scale of datasets and architectures we could
evaluate.

Futur works and development efforts could target the evaluation of our
method on larger networks and datasets, namely the ResNet-50 architec-
ture [67], Vision Transformers [30], both in combination with the ImageNet
dataset [170]. A larger dataset like ImageNet would allow to sample more
topologies and therefore explore the topology space more thoroughly.

1Code available at: https://github.com/N0ciple/ASLP

167

https://github.com/N0ciple/ASLP

6.2. PERSPECTIVES

Structured Pruning. The methods introduced in chapters 4 and 5 are
unstructured pruning methods, meaning that they prune weights individ-
ually which is a flexible approach that allows to reach high pruning rates.
However, the speedup obtained by unstructured pruning is not straightfor-
ward and could necessitate additional optimisations. On the other hand,
structured pruning methods, which prune weights in groups, yield networks
with lower pruning rates but with a regular structure. This regularity can
be exploited to obtain a more straightforward speedup in the most popular
Deep Learning frameworks [147, 1].

Our method, Arbitrarily Shifted Log Parametrisation (ASLP), could
benefit from a structured pruning approach. In addition to the aforemen-
tioned network regularity, using a structured approach could allow to re-
duce the number of masks to train. Instead of training a mask per weight,
it is possible to train a mask per group of weights. This could lead to
significant memory savings and speedups during training since the sam-
pling operation takes a heavy toll on the GPU. Our preliminary works on
a semi-structured approach, where we start by pruning the network with
a structured approach and then perform an unstructured pruning step af-
terwards, limits the sampling: we only sample the weights that are not
pruned by the structured part. This approach is promising since it can
reduce on average the number of masks to sample. However, the theoret-
ical sampling speedup is not observed in practice due to memory latency
caused by partial access to the masks. A careful reimplementation of the
mask partial selection and sampling logic could resolve this issue and allow
for faster sampling.

Controlling mask magnitude. In chapter 5, we used a learning rate
value of 50 that is several orders of magnitude higher than standard learn-
ing rates used in baselines training [22]. This choice is motivated and
explained in section 5.5.4. However, this high learning rate together with
vanishingly small gradients as masks move away from the origin (as ex-
plained in section 5.3.1) can lead to masks being stuck at their high or low
value and therefore being effectively frozen.

Adding a regularisation term to the loss function that penalises masks
with extreme values, or any other mechanism that can limit the magni-
tude of the masks could help to mitigate this issue and prevent a mask
from being frozen. Our preliminary experiments with naive regularisation

168

CONTENTS

loss show improved results in the aforementioned semi-supervised setup.

Better initialisation scheme. The ASLP method introduced in chap-
ter 5 extracts a lightweight and effective neural network from a large un-
trained one. The weights of the large network are initialised with state-of-
the-art methods such as Kaiming initialisation [66] and are not modified.
However, these initialisations are designed with weight training in mind
and might not be optimal for the ASLP method which does not train the
weights.

A better initialisation scheme could be designed to improve the perfor-
mance of the ASLP method. This initialisation scheme could be inspired
by trained weight distributions and could be designed to be more robust
to the pruning and sampling operation.

Training through pruning. ASLP and experiments conducted in chap-
ter 5 showed that it is possible to achieve compelling performances without
training the weights. This raises the question of the very necessity of train-
ing the weights and opens the way for new research directions that inves-
tigate the possibility of training a network through pruning. Furthermore,
in this context, the word training is to be understood lato sensu and could
include any strategy that selects a topology, not necessarily strategies that
rely on gradient-based mask training as we proposed.

169

6.2. PERSPECTIVES

170

Appendix A

Appendix

A.1 Relationship between Multiply-Accumulate
Operations and the Number of Parameters

For a convolution operation, the number of parameters of a layer is not rep-
resentative of its computational complexity. Each kernel has to be spatially
convolved with the entire input. The resulting convolutional complexity
is, for one part, highly dependent on the input size, and for the other part,
higher than the number of parameters.

Without loss of generality, consider a 2D square matrix M of size m×m,
and a 2D convolution kernel K of size k × k, with k ≪ m. The output of
the spatial convolution of M by K is denoted O. The matrix O is of size
(m − k + 1) × (m − k + 1). Each one of the (m − k + 1)2 elements of O
necessitates k2 multiplications and k2 − 1 additions. For the sake of sim-
plicity, we will consider k2 Multiply-Accumulates (MACs) operations per
element of O. The total number of MACs needed to compute O, denoted
µ, is therefore:

µ = (m− k + 1)2 × k2

Considering that there are k2 elements in K, the ratio between the
number of MACs and the number of parameters is:

µ

k2 = (m− k + 1)2

171

A.2. SCHEDULING OF THE MIXING COEFFICIENT λ

Since k ≪ m, the ratio µ
k2 is always greater than 1, and grows quadrat-

ically with m. Therefore, for a 2D convolution, the computational com-
plexity can roughly be estimated as (m − k + 1)2 times the number of
parameters in the convolution kernel.

A.2 Scheduling of the Mixing Coefficient λ

This section presents the test accuracy of a Conv4 network trained on
CIFAR-10 with the method introduced in section 4.2.1 when scheduling is
applied on the mixing coefficient λ. Two trends are tested for λ: increasing
and decreasing. Given a λmax, a maximum number of epochs emax, the cur-
rent epoch e, and a shape parameter p, the decreasing scheduling is defined
as follows:

λe = λmax
p

√√√√1−
(

e

emax

)p

and the increasing scheduling is defined as follows:

λe = λmax

1− p

√√√√1−
(

e

emax

)p


Examples of the evolution of λ for different values of p are shown in fig-
ure A.1 and the related performances in table A.1.

A.3 Xavier and Kaiming Initialisations
Glorot and Kaiming initializations are strategies for initializing the weights
of neural networks. They are designed to help mitigate the issues of vanish-
ing and exploding gradients, which can occur during the training of deep
neural networks.

Glorot Initialization, also known as Xavier Initialization, suggests that
the initial weights of the network should be drawn from a distribution
with zero mean and a specific variance. The variance is dependent on the

172

APPENDIX A. APPENDIX

pruning rate (%) λ Trend p Test Accuracy (%)

90

incr.
0.6 85.46 ± 0.18

1 85.43 ± 0.46
1

0.6 84.96 ± 0.53

decr.
0.6 85.36 ± 0.59

1 85.55 ± 0.47
1

0.6 85.50 ± 0.29

95

incr.
0.6 84.00 ± 0.85

1 79.28 ± 0.96
1

0.6 66.43 ± 05.13

decr.
0.6 83.53 ± 0.65

1 83.42 ± 0.50
1

0.6 84.07 ± 0.92

99

incr.
0.6 14.27 ± 3.21

1 11.05 ± 01.26
1

0.6 10.33 ± 0.43

decr.
0.6 34.36 ± 33.40

1 52.51 ± 29.65
1

0.6 45.37 ± 32.32

Table A.1: Conv4 test accuracy on CIFAR-10, with λ = 50, for increasing
(incr.) and decreasing (decr.) scheduling for various pruning rates and values of
the parameter p. The networks have been trained for 300 epochs.

173

A.3. XAVIER AND KAIMING INITIALISATIONS

0.0 0.2 0.4 0.6 0.8 1.0
e

emax

0.0

0.2

0.4

0.6

0.8

1.0
λ

n = 0.6

n = 1

n = 1
0.6

(a) Increasing scheduling

0.0 0.2 0.4 0.6 0.8 1.0
e

emax

0.0

0.2

0.4

0.6

0.8

1.0

λ

n = 0.6

n = 1

n = 1
0.6

(b) Decreasing scheduling

Figure A.1: Evolution of the mixing coefficient λ for different values of p and
for increasing and decreasing scheduling. Best viewed in color.

number of input and output neurons in the weight tensor. Kaiming initial-
isation is a modification of Glorot initialisation that is tailored for neural
networks with ReLU activations. It is designed to take into account the
fact that ReLU activations nullify half of the input values. These two types
of initialisation can be used with either a normal or uniform distribution.
They impact the standard deviation (and consequently the variance) of the
underlying distribution. The standard deviation for Glorot normal initial-
isation is computed as follows:

σ =
√√√√ 2

nin + nout
(A.1)

where nin and nout are the number of input and output neurons in the
weight tensor. The standard deviation for Kaiming normal initialisation is
computed as follows:

σ = 1
√

nin
(A.2)

where nin is the number of input neurons in the weight tensor.

It is important to note that, when using the Pytorch framework, this
standard deviation is adapted depending on the type of non-linearities used

174

APPENDIX A. APPENDIX

in the network. For instance, using ReLU activation functions require mul-
tiplying the standard deviation by

√
2 [152].

175

A.3. XAVIER AND KAIMING INITIALISATIONS

176

Bibliography
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo,

Zhifeng Chen, Craig Citro, Gregory S. Corrado, Andy Davis, Jef-
frey Dean, Matthieu Devin, Sanjay Ghemawat, Ian J. Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal
Józefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan
Mané, Rajat Monga, Sherry Moore, Derek Gordon Murray, Chris
Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever,
Kunal Talwar, Paul A. Tucker, Vincent Vanhoucke, Vijay Vasudevan,
Fernanda B. Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. Tensorflow: Large-
scale machine learning on heterogeneous distributed systems. CoRR,
abs/1603.04467, 2016. URL http://arxiv.org/abs/1603.04467.

[2] S. Ahn, S. X. Hu, A. C. Damianou, N. D. Lawrence, and Z. Dai. Varia-
tional information distillation for knowledge transfer. In CVPR, 2019.
doi: 10.1109/CVPR.2019.00938. URL http://openaccess.thecvf.
com/content_CVPR_2019/html/Ahn_Variational_Information_
Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html.

[3] Hande Alemdar, Vincent Leroy, Adrien Prost-Boucle, and Frédéric
Pétrot. Ternary neural networks for resource-efficient ai applications.
In 2017 international joint conference on neural networks (IJCNN),
pages 2547–2554. IEEE, 2017.

[4] Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai,
Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan
Catanzaro, Jingdong Chen, Mike Chrzanowski, Adam Coates, Greg
Diamos, Erich Elsen, Jesse H. Engel, Linxi Fan, Christopher Fougner,
Awni Y. Hannun, Billy Jun, Tony Han, Patrick LeGresley, Xiangang
Li, Libby Lin, Sharan Narang, Andrew Y. Ng, Sherjil Ozair, Ryan
Prenger, Sheng Qian, Jonathan Raiman, Sanjeev Satheesh, David
Seetapun, Shubho Sengupta, Chong Wang, Yi Wang, Zhiqian Wang,

177

http://arxiv.org/abs/1603.04467
http://openaccess.thecvf.com/content_CVPR_2019/html/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Ahn_Variational_Information_Distillation_for_Knowledge_Transfer_CVPR_2019_paper.html

BIBLIOGRAPHY

Bo Xiao, Yan Xie, Dani Yogatama, Jun Zhan, and Zhenyao Zhu.
Deep speech 2 : End-to-end speech recognition in english and man-
darin. In Maria-Florina Balcan and Kilian Q. Weinberger, editors,
Proceedings of the 33nd International Conference on Machine Learn-
ing, ICML 2016, New York City, NY, USA, June 19-24, 2016, vol-
ume 48 of JMLR Workshop and Conference Proceedings, pages 173–
182. JMLR.org, 2016. URL http://proceedings.mlr.press/v48/
amodei16.html.

[5] Sajid Anwar, Kyuyeon Hwang, and Wonyong Sung. Structured prun-
ing of deep convolutional neural networks. ACM Journal on Emerging
Technologies in Computing Systems (JETC), 13(3):1–18, 2017.

[6] Sercan Ö Arık, Mike Chrzanowski, Adam Coates, Gregory Diamos,
Andrew Gibiansky, Yongguo Kang, Xian Li, John Miller, Andrew
Ng, Jonathan Raiman, et al. Deep voice: Real-time neural text-
to-speech. In International conference on machine learning, pages
195–204. PMLR, 2017.

[7] Wolfgang Balzer, Masanobu Takahashi, Jun Ohta, and Kazuo
Kyuma. Weight quantization in boltzmann machines. Neural Net-
works, 4(3):405–409, 1991.

[8] David Barber and Felix Agakov. The im algorithm: a variational ap-
proach to information maximization. Advances in neural information
processing systems, 16(320):201, 2004.

[9] Y. Bengio, N. Léonard, and A. C. Courville. Estimating or propagat-
ing gradients through stochastic neurons for conditional computation.
CoRR, abs/1308.3432, 2013.

[10] James Bergstra, Rémi Bardenet, Yoshua Bengio, and Balázs Kégl.
Algorithms for hyper-parameter optimization. In John Shawe-
Taylor, Richard S. Zemel, Peter L. Bartlett, Fernando C. N. Pereira,
and Kilian Q. Weinberger, editors, Advances in Neural Informa-
tion Processing Systems 24: 25th Annual Conference on Neu-
ral Information Processing Systems 2011. Proceedings of a meet-
ing held 12-14 December 2011, Granada, Spain, pages 2546–2554,
2011. URL https://proceedings.neurips.cc/paper/2011/hash/
86e8f7ab32cfd12577bc2619bc635690-Abstract.html.

[11] Stephen P Boyd and Lieven Vandenberghe. Convex optimization.
Cambridge university press, 2004.

178

http://proceedings.mlr.press/v48/amodei16.html
http://proceedings.mlr.press/v48/amodei16.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html
https://proceedings.neurips.cc/paper/2011/hash/86e8f7ab32cfd12577bc2619bc635690-Abstract.html

BIBLIOGRAPHY

[12] Pawel Budzianowski and Ivan Vulic. Hello, it’s GPT-2 - how can I
help you? towards the use of pretrained language models for task-
oriented dialogue systems. In Alexandra Birch, Andrew M. Finch,
Hiroaki Hayashi, Ioannis Konstas, Thang Luong, Graham Neubig,
Yusuke Oda, and Katsuhito Sudoh, editors, Proceedings of the 3rd
Workshop on Neural Generation and Translation@EMNLP-IJCNLP
2019, Hong Kong, November 4, 2019, pages 15–22. Association for
Computational Linguistics, 2019. doi: 10.18653/v1/D19-5602. URL
https://doi.org/10.18653/v1/D19-5602.

[13] William Chan, Navdeep Jaitly, Quoc V. Le, and Oriol Vinyals. Lis-
ten, attend and spell: A neural network for large vocabulary conver-
sational speech recognition. In 2016 IEEE International Conference
on Acoustics, Speech and Signal Processing, ICASSP 2016, Shang-
hai, China, March 20-25, 2016, pages 4960–4964. IEEE, 2016. doi:
10.1109/ICASSP.2016.7472621. URL https://doi.org/10.1109/
ICASSP.2016.7472621.

[14] Jianda Chen, Shangyu Chen, and Sinno Jialin Pan. Stor-
age efficient and dynamic flexible runtime channel pruning via
deep reinforcement learning. In Hugo Larochelle, Marc’Aurelio
Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin, editors, Advances in Neural Information Processing Sys-
tems 33: Annual Conference on Neural Information Process-
ing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
a914ecef9c12ffdb9bede64bb703d877-Abstract.html.

[15] Yu Cheng, Felix X. Yu, Rogério Schmidt Feris, Sanjiv Kumar, Alok N.
Choudhary, and Shih-Fu Chang. An exploration of parameter redun-
dancy in deep networks with circulant projections. In 2015 IEEE
International Conference on Computer Vision, ICCV 2015, San-
tiago, Chile, December 7-13, 2015, pages 2857–2865. IEEE Com-
puter Society, 2015. doi: 10.1109/ICCV.2015.327. URL https:
//doi.org/10.1109/ICCV.2015.327.

[16] Yu Cheng, Duo Wang, Pan Zhou, and Tao Zhang. A survey of
model compression and acceleration for deep neural networks. arXiv
preprint arXiv:1710.09282, 2017.

[17] Zhiyong Cheng, Daniel Soudry, Zexi Mao, and Zhen-zhong Lan.
Training binary multilayer neural networks for image classification

179

https://doi.org/10.18653/v1/D19-5602
https://doi.org/10.1109/ICASSP.2016.7472621
https://doi.org/10.1109/ICASSP.2016.7472621
https://proceedings.neurips.cc/paper/2020/hash/a914ecef9c12ffdb9bede64bb703d877-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/a914ecef9c12ffdb9bede64bb703d877-Abstract.html
https://doi.org/10.1109/ICCV.2015.327
https://doi.org/10.1109/ICCV.2015.327

BIBLIOGRAPHY

using expectation backpropagation. CoRR, abs/1503.03562, 2015.
URL http://arxiv.org/abs/1503.03562.

[18] Lu Chi, Borui Jiang, and Yadong Mu. Fast fourier convolution. In
Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information
Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, vir-
tual, 2020. URL https://proceedings.neurips.cc/paper/2020/
hash/2fd5d41ec6cfab47e32164d5624269b1-Abstract.html.

[19] Jason Cong and Bingjun Xiao. Minimizing computation in con-
volutional neural networks. In Stefan Wermter, Cornelius Weber,
Wlodzislaw Duch, Timo Honkela, Petia D. Koprinkova-Hristova,
Sven Magg, Günther Palm, and Alessandro E. P. Villa, editors, Arti-
ficial Neural Networks and Machine Learning - ICANN 2014 - 24th
International Conference on Artificial Neural Networks, Hamburg,
Germany, September 15-19, 2014. Proceedings, volume 8681 of Lec-
ture Notes in Computer Science, pages 281–290. Springer, 2014. doi:
10.1007/978-3-319-11179-7_36. URL https://doi.org/10.1007/
978-3-319-11179-7_36.

[20] Don Coppersmith and Shmuel Winograd. Matrix multiplication via
arithmetic progressions. In Proceedings of the nineteenth annual ACM
symposium on Theory of computing, pages 1–6, 1987.

[21] NVIDIA Corporation. cuDNN: NVIDIA CUDA Deep Neural Net-
work library. https://developer.nvidia.com/cudnn, 2014. Ac-
cessed: May 29, 2023.

[22] Nvidia Corporation. Nvidia deep learning examples for tensor cores,
2023. URL https://github.com/NVIDIA/DeepLearningExamples.
[Online; accessed 23-June-2023].

[23] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. Advances in neural information processing systems, 28,
2015.

[24] George Cybenko. Approximation by superpositions of a sigmoidal
function. Mathematics of control, signals and systems, 2(4):303–314,
1989.

180

http://arxiv.org/abs/1503.03562
https://proceedings.neurips.cc/paper/2020/hash/2fd5d41ec6cfab47e32164d5624269b1-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/2fd5d41ec6cfab47e32164d5624269b1-Abstract.html
https://doi.org/10.1007/978-3-319-11179-7_36
https://doi.org/10.1007/978-3-319-11179-7_36
https://developer.nvidia.com/cudnn
https://github.com/NVIDIA/DeepLearningExamples

BIBLIOGRAPHY

[25] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-
Fei. Imagenet: A large-scale hierarchical image database. In 2009
IEEE conference on computer vision and pattern recognition, pages
248–255. Ieee, 2009.

[26] Li Deng. The mnist database of handwritten digit images for machine
learning research [best of the web]. IEEE Signal Processing Magazine,
29(6):141–142, 2012. doi: 10.1109/MSP.2012.2211477.

[27] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
BERT: pre-training of deep bidirectional transformers for language
understanding. In Jill Burstein, Christy Doran, and Thamar Solorio,
editors, Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA,
June 2-7, 2019, Volume 1 (Long and Short Papers), pages 4171–4186.
Association for Computational Linguistics, 2019. doi: 10.18653/v1/
n19-1423. URL https://doi.org/10.18653/v1/n19-1423.

[28] Xiaohan Ding, Guiguang Ding, Yuchen Guo, Jungong Han, and
Chenggang Yan. Approximated oracle filter pruning for destruc-
tive CNN width optimization. In Kamalika Chaudhuri and Ruslan
Salakhutdinov, editors, Proceedings of the 36th International Confer-
ence on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Re-
search, pages 1607–1616. PMLR, 2019. URL http://proceedings.
mlr.press/v97/ding19a.html.

[29] Ke Dong, Chengjie Zhou, Yihan Ruan, and Yuzhi Li. Mobilenetv2
model for image classification. In 2020 2nd International Conference
on Information Technology and Computer Application (ITCA), pages
476–480, 2020. doi: 10.1109/ITCA52113.2020.00106.

[30] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weis-
senborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani,
Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An image is worth 16x16 words: Transformers
for image recognition at scale. In 9th International Conference on
Learning Representations, ICLR 2021, Virtual Event, Austria, May
3-7, 2021. OpenReview.net, 2021. URL https://openreview.net/
forum?id=YicbFdNTTy.

181

https://doi.org/10.18653/v1/n19-1423
http://proceedings.mlr.press/v97/ding19a.html
http://proceedings.mlr.press/v97/ding19a.html
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy

BIBLIOGRAPHY

[31] Charles-Éric Drevet, Md. Nazrul Islam, and Éric Schost. Opti-
mization techniques for small matrix multiplication. ACM Com-
mun. Comput. Algebra, 44(3/4):107–108, 2010. doi: 10.1145/1940475.
1940488. URL https://doi.org/10.1145/1940475.1940488.

[32] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient
methods for online learning and stochastic optimization. Journal of
machine learning research, 12(7), 2011.

[33] Marat Dukhan, Yiming Wu, and Hao Lu. Qnnpack: Open source
library for optimized mobile deep learning. https://engineering.
fb.com/2018/10/29/ml-applications/qnnpack/, 2018. Accessed:
26/05/2023.

[34] R. Dupont. ASLP - Our implementation. https://github.com/
N0ciple/ASLP, 2022.

[35] Robin Dupont, Hichem Sahbi, and Guillaume Michel. Weight re-
parametrization for budget-aware network pruning. In 2021 IEEE
International Conference on Image Processing, ICIP 2021, Anchor-
age, AK, USA, September 19-22, 2021, pages 789–793. IEEE, 2021.
doi: 10.1109/ICIP42928.2021.9506265. URL https://doi.org/10.
1109/ICIP42928.2021.9506265.

[36] Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi, and Al-
ice Lebois. Extracting effective subnetworks with gumbel-softmax.
In 2022 IEEE International Conference on Image Processing, ICIP
2022, Bordeaux, France, 16-19 October 2022, pages 931–935. IEEE,
2022. doi: 10.1109/ICIP46576.2022.9897718. URL https://doi.
org/10.1109/ICIP46576.2022.9897718.

[37] Sara Elkerdawy, Mostafa Elhoushi, Hong Zhang, and Nilanjan Ray.
Fire together wire together: A dynamic pruning approach with self-
supervised mask prediction. In IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, CVPR 2022, New Orleans,
LA, USA, June 18-24, 2022, pages 12444–12453. IEEE, 2022. doi:
10.1109/CVPR52688.2022.01213. URL https://doi.org/10.1109/
CVPR52688.2022.01213.

[38] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural
architecture search: A survey. The Journal of Machine Learning
Research, 20(1):1997–2017, 2019.

182

https://doi.org/10.1145/1940475.1940488
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/
https://engineering.fb.com/2018/10/29/ml-applications/qnnpack/
https://github.com/N0ciple/ASLP
https://github.com/N0ciple/ASLP
https://doi.org/10.1109/ICIP42928.2021.9506265
https://doi.org/10.1109/ICIP42928.2021.9506265
https://doi.org/10.1109/ICIP46576.2022.9897718
https://doi.org/10.1109/ICIP46576.2022.9897718
https://doi.org/10.1109/CVPR52688.2022.01213
https://doi.org/10.1109/CVPR52688.2022.01213

BIBLIOGRAPHY

[39] Max Ferguson, Ronay Ak, Yung-Tsun Tina Lee, and Kincho H Law.
Automatic localization of casting defects with convolutional neural
networks. In 2017 IEEE international conference on big data (big
data), pages 1726–1735. IEEE, 2017.

[40] Emile Fiesler, Amar Choudry, and H John Caulfield. Weight dis-
cretization paradigm for optical neural networks. In Optical inter-
connections and networks, volume 1281, pages 164–173. SPIE, 1990.

[41] Allen Institute for AI. hidden-networks: A repos-
itory for research on neural networks, 2023. URL
https://github.com/allenai/hidden-networks/blob/
dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.
py#L29C18-L29C18. [Online; accessed 23-June-2023].

[42] Charles W Fox and Stephen J Roberts. A tutorial on variational
bayesian inference. Artificial intelligence review, 38:85–95, 2012.

[43] Jonathan Frankle and Michael Carbin. The lottery ticket hypoth-
esis: Finding sparse, trainable neural networks. In 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019. URL
https://openreview.net/forum?id=rJl-b3RcF7.

[44] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and
Michael Carbin. The lottery ticket hypothesis at scale. CoRR,
abs/1903.01611, 2019. URL http://arxiv.org/abs/1903.01611.

[45] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and
Michael Carbin. Linear mode connectivity and the lottery ticket
hypothesis. In Proceedings of the 37th International Conference on
Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event, vol-
ume 119 of Proceedings of Machine Learning Research, pages 3259–
3269. PMLR, 2020. URL http://proceedings.mlr.press/v119/
frankle20a.html.

[46] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and
Michael Carbin. Pruning neural networks at initialization: Why are
we missing the mark? arXiv preprint arXiv:2009.08576, 2020.

[47] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity
in deep neural networks. CoRR, abs/1902.09574, 2019. URL http:
//arxiv.org/abs/1902.09574.

183

https://github.com/allenai/hidden-networks/blob/dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.py#L29C18-L29C18
https://github.com/allenai/hidden-networks/blob/dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.py#L29C18-L29C18
https://github.com/allenai/hidden-networks/blob/dddf2d093de568fc76d460a77fa2650e56e79c1a/data/cifar.py#L29C18-L29C18
https://openreview.net/forum?id=rJl-b3RcF7
http://arxiv.org/abs/1903.01611
http://proceedings.mlr.press/v119/frankle20a.html
http://proceedings.mlr.press/v119/frankle20a.html
http://arxiv.org/abs/1902.09574
http://arxiv.org/abs/1902.09574

BIBLIOGRAPHY

[48] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. A neural
algorithm of artistic style. CoRR, abs/1508.06576, 2015. URL http:
//arxiv.org/abs/1508.06576.

[49] Joseph C Giarratano and Gary Riley. Expert systems: principles and
programming. PWS Publishing Co., 1994.

[50] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of
training deep feedforward neural networks. In Proceedings of the thir-
teenth international conference on artificial intelligence and statistics,
pages 249–256, 2010.

[51] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse
rectifier neural networks. In Proceedings of the fourteenth interna-
tional conference on artificial intelligence and statistics, pages 315–
323. JMLR Workshop and Conference Proceedings, 2011.

[52] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning.
MIT press, 2016.

[53] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David
Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio.
Generative adversarial networks. Communications of the ACM, 63
(11):139–144, 2020.

[54] Robert M Gray et al. Toeplitz and circulant matrices: A review.
Foundations and Trends® in Communications and Information The-
ory, 2(3):155–239, 2006.

[55] E.J. Gumbel. Les valeurs extrêmes des distributions statistiques.
Annales de l’Institut Henri Poincaré, 5(2):115–158, 1935.

[56] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic net-
work surgery for efficient dnns. In Daniel D. Lee, Masashi
Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems
29: Annual Conference on Neural Information Processing Systems
2016, December 5-10, 2016, Barcelona, Spain, pages 1379–1387,
2016. URL https://proceedings.neurips.cc/paper/2016/hash/
2823f4797102ce1a1aec05359cc16dd9-Abstract.html.

[57] Suyog Gupta, Ankur Agrawal, Kailash Gopalakrishnan, and Pritish
Narayanan. Deep learning with limited numerical precision. In Inter-
national conference on machine learning, pages 1737–1746. PMLR,
2015.

184

http://arxiv.org/abs/1508.06576
http://arxiv.org/abs/1508.06576
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/2823f4797102ce1a1aec05359cc16dd9-Abstract.html

BIBLIOGRAPHY

[58] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal resid-
ual networks. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 6307–6315. IEEE Computer Society, 2017. doi: 10.1109/
CVPR.2017.668. URL https://doi.org/10.1109/CVPR.2017.668.

[59] Song Han, Jeff Pool, John Tran, and William J. Dally.
Learning both weights and connections for efficient neural net-
work. In Corinna Cortes, Neil D. Lawrence, Daniel D.
Lee, Masashi Sugiyama, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 28: Annual Confer-
ence on Neural Information Processing Systems 2015, Decem-
ber 7-12, 2015, Montreal, Quebec, Canada, pages 1135–1143,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/
ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html.

[60] Song Han, Huizi Mao, and William J. Dally. Deep compression: Com-
pressing deep neural network with pruning, trained quantization and
huffman coding. In Yoshua Bengio and Yann LeCun, editors, 4th
International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceed-
ings, 2016. URL http://arxiv.org/abs/1510.00149.

[61] Awni Y. Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg
Diamos, Erich Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sen-
gupta, Adam Coates, and Andrew Y. Ng. Deep speech: Scaling up
end-to-end speech recognition. CoRR, abs/1412.5567, 2014. URL
http://arxiv.org/abs/1412.5567.

[62] Stephen Hanson and Lorien Pratt. Comparing biases for minimal
network construction with back-propagation. Advances in neural in-
formation processing systems, 1, 1988.

[63] Babak Hassibi and David G. Stork. Second order derivatives for
network pruning: Optimal brain surgeon. In Stephen Jose Han-
son, Jack D. Cowan, and C. Lee Giles, editors, Advances in Neu-
ral Information Processing Systems 5, [NIPS Conference, Denver,
Colorado, USA, November 30 - December 3, 1992], pages 164–171.
Morgan Kaufmann, 1992.

[64] Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain
surgeon and general network pruning. In Proceedings of Interna-
tional Conference on Neural Networks (ICNN’88), San Francisco,

185

https://doi.org/10.1109/CVPR.2017.668
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/ae0eb3eed39d2bcef4622b2499a05fe6-Abstract.html
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1412.5567

BIBLIOGRAPHY

CA, USA, March 28 - April 1, 1993, pages 293–299. IEEE, 1993.
doi: 10.1109/ICNN.1993.298572. URL https://doi.org/10.1109/
ICNN.1993.298572.

[65] Babak Hassibi, David G. Stork, and Gregory J. Wolff. Optimal brain
surgeon: Extensions and performance comparison. In Jack D. Cowan,
Gerald Tesauro, and Joshua Alspector, editors, Advances in Neural
Information Processing Systems 6, [7th NIPS Conference, Denver,
Colorado, USA, 1993], pages 263–270. Morgan Kaufmann, 1993.

[66] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. In
ICCV, 2015.

[67] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2016, Las
Vegas, NV, USA, June 27-30, 2016, pages 770–778. IEEE Com-
puter Society, 2016. doi: 10.1109/CVPR.2016.90. URL https:
//doi.org/10.1109/CVPR.2016.90.

[68] Yang He and Lingao Xiao. Structured pruning for deep convolutional
neural networks: A survey. CoRR, abs/2303.00566, 2023. doi: 10.
48550/arXiv.2303.00566. URL https://doi.org/10.48550/arXiv.
2303.00566.

[69] Yang He, Guoliang Kang, Xuanyi Dong, Yanwei Fu, and Yi Yang.
Soft filter pruning for accelerating deep convolutional neural net-
works. In Jérôme Lang, editor, Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI 2018,
July 13-19, 2018, Stockholm, Sweden, pages 2234–2240. ijcai.org,
2018. doi: 10.24963/ijcai.2018/309. URL https://doi.org/10.
24963/ijcai.2018/309.

[70] Yang He, Ping Liu, Ziwei Wang, Zhilan Hu, and Yi Yang. Fil-
ter pruning via geometric median for deep convolutional neural
networks acceleration. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2019, Long Beach, CA,
USA, June 16-20, 2019, pages 4340–4349. Computer Vision
Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00447.
URL http://openaccess.thecvf.com/content_CVPR_2019/
html/He_Filter_Pruning_via_Geometric_Median_for_Deep_
Convolutional_Neural_Networks_CVPR_2019_paper.html.

186

https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/ICNN.1993.298572
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.48550/arXiv.2303.00566
https://doi.org/10.48550/arXiv.2303.00566
https://doi.org/10.24963/ijcai.2018/309
https://doi.org/10.24963/ijcai.2018/309
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html

BIBLIOGRAPHY

[71] Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accel-
erating very deep neural networks. In IEEE International Conference
on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 1398–1406. IEEE Computer Society, 2017. doi: 10.1109/ICCV.
2017.155. URL https://doi.org/10.1109/ICCV.2017.155.

[72] Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song Han.
AMC: automl for model compression and acceleration on mobile de-
vices. In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and
Yair Weiss, editors, Computer Vision - ECCV 2018 - 15th European
Conference, Munich, Germany, September 8-14, 2018, Proceedings,
Part VII, volume 11211 of Lecture Notes in Computer Science, pages
815–832. Springer, 2018. doi: 10.1007/978-3-030-01234-2_48. URL
https://doi.org/10.1007/978-3-030-01234-2_48.

[73] Donald Olding Hebb. The organization of behavior: A neuropsycho-
logical theory. Psychology press, 2005.

[74] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowledge in a
neural network. CoRR, abs/1503.02531, 2015. URL http://arxiv.
org/abs/1503.02531.

[75] Geoffrey Hinton. Neural networks for machine learning, lecture 6.6 -
rmsprop: Divide the gradient by a running average of its recent mag-
nitude. https://www.cs.toronto.edu/~tijmen/csc321/slides/
lecture_slides_lec6.pdf, 2012.

[76] Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Improving neural networks by
preventing co-adaptation of feature detectors. CoRR, abs/1207.0580,
2012. URL http://arxiv.org/abs/1207.0580.

[77] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, Jürgen Schmidhu-
ber, et al. Gradient flow in recurrent nets: the difficulty of learning
long-term dependencies, 2001.

[78] Arthur E Hoerl and Robert W Kennard. Ridge regression: Biased
estimation for nonorthogonal problems. Technometrics, 12(1):55–67,
1970.

[79] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017. URL http://arxiv.org/abs/1704.04861.

187

https://doi.org/10.1109/ICCV.2017.155
https://doi.org/10.1007/978-3-030-01234-2_48
http://arxiv.org/abs/1503.02531
http://arxiv.org/abs/1503.02531
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
http://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1704.04861

BIBLIOGRAPHY

[80] Andrew Howard, Ruoming Pang, Hartwig Adam, Quoc V. Le, Mark
Sandler, Bo Chen, Weijun Wang, Liang-Chieh Chen, Mingxing Tan,
Grace Chu, Vijay Vasudevan, and Yukun Zhu. Searching for mo-
bilenetv3. In 2019 IEEE/CVF International Conference on Com-
puter Vision, ICCV 2019, Seoul, Korea (South), October 27 - Novem-
ber 2, 2019, pages 1314–1324. IEEE, 2019. doi: 10.1109/ICCV.2019.
00140. URL https://doi.org/10.1109/ICCV.2019.00140.

[81] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko,
Weijun Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam.
Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861, 2017.

[82] Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Net-
work trimming: A data-driven neuron pruning approach towards
efficient deep architectures. CoRR, abs/1607.03250, 2016. URL
http://arxiv.org/abs/1607.03250.

[83] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-
works. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 7132–7141. Computer Vision Foundation /
IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00745.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html.

[84] G. Huang, S. Liu, L. van der Maaten, and K. Q. Weinberger.
Condensenet: An efficient densenet using learned group con-
volutions. In CVPR, 2018. doi: 10.1109/CVPR.2018.00291.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html.

[85] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In Proceed-
ings of the IEEE conference on computer vision and pattern recogni-
tion, pages 4700–4708, 2017.

[86] Gao Huang, Shichen Liu, Laurens Van der Maaten, and Kilian Q
Weinberger. Condensenet: An efficient densenet using learned group
convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2752–2761, 2018.

[87] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-Yaniv,
and Yoshua Bengio. Binarized neural networks. In Daniel D. Lee,

188

https://doi.org/10.1109/ICCV.2019.00140
http://arxiv.org/abs/1607.03250
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Hu_Squeeze-and-Excitation_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Huang_CondenseNet_An_Efficient_CVPR_2018_paper.html

BIBLIOGRAPHY

Masashi Sugiyama, Ulrike von Luxburg, Isabelle Guyon, and Ro-
man Garnett, editors, Advances in Neural Information Processing
Systems 29: Annual Conference on Neural Information Processing
Systems 2016, December 5-10, 2016, Barcelona, Spain, pages 4107–
4115, 2016. URL https://proceedings.neurips.cc/paper/2016/
hash/d8330f857a17c53d217014ee776bfd50-Abstract.html.

[88] David A Huffman. A method for the construction of minimum-
redundancy codes. Proceedings of the IRE, 40(9):1098–1101, 1952.

[89] Forrest N. Iandola, Matthew W. Moskewicz, Khalid Ashraf, Song
Han, William J. Dally, and Kurt Keutzer. Squeezenet: Alexnet-level
accuracy with 50x fewer parameters and <1mb model size. CoRR,
abs/1602.07360, 2016. URL http://arxiv.org/abs/1602.07360.

[90] Sergey Ioffe and Christian Szegedy. Batch normalization: Acceler-
ating deep network training by reducing internal covariate shift. In
Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd
International Conference on Machine Learning, ICML 2015, Lille,
France, 6-11 July 2015, volume 37 of JMLR Workshop and Con-
ference Proceedings, pages 448–456. JMLR.org, 2015. URL http:
//proceedings.mlr.press/v37/ioffe15.html.

[91] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew
Tang, Andrew G. Howard, Hartwig Adam, and Dmitry Kalenichenko.
Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In 2018 IEEE Conference on Computer Vi-
sion and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA,
June 18-22, 2018, pages 2704–2713. Computer Vision Foundation
/ IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00286.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Jacob_Quantization_and_Training_CVPR_2018_paper.html.

[92] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameter-
ization with gumbel-softmax. In 5th International Conference on
Learning Representations, ICLR 2017, Toulon, France, April 24-26,
2017, Conference Track Proceedings. OpenReview.net, 2017. URL
https://openreview.net/forum?id=rkE3y85ee.

[93] Steven A Janowsky. Pruning versus clipping in neural networks.
Physical Review A, 39(12):6600, 1989.

[94] Norman P Jouppi, Cliff Young, Nishant Patil, David Patterson, Gau-
rav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Bo-

189

https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/d8330f857a17c53d217014ee776bfd50-Abstract.html
http://arxiv.org/abs/1602.07360
http://proceedings.mlr.press/v37/ioffe15.html
http://proceedings.mlr.press/v37/ioffe15.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Jacob_Quantization_and_Training_CVPR_2018_paper.html
https://openreview.net/forum?id=rkE3y85ee

BIBLIOGRAPHY

den, Al Borchers, et al. In-datacenter performance analysis of a ten-
sor processing unit. In Proceedings of the 44th annual international
symposium on computer architecture, pages 1–12, 2017.

[95] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael
Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates,
Augustin Žídek, Anna Potapenko, et al. Highly accurate protein
structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[96] Minsoo Kang and Bohyung Han. Operation-aware soft channel
pruning using differentiable masks. In Proceedings of the 37th In-
ternational Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceedings of Machine
Learning Research, pages 5122–5131. PMLR, 2020. URL http:
//proceedings.mlr.press/v119/kang20a.html.

[97] Ehud D. Karnin. A simple procedure for pruning back-propagation
trained neural networks. IEEE Trans. Neural Networks, 1(2):239–
242, 1990. doi: 10.1109/72.80236. URL https://doi.org/10.1109/
72.80236.

[98] Tero Karras, Samuli Laine, and Timo Aila. A style-based generator
architecture for generative adversarial networks. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition,
pages 4401–4410, 2019.

[99] Chanwoo Kim, Dhananjaya Gowda, Dongsoo Lee, Jiyeon Kim, Ankur
Kumar, Sungsoo Kim, Abhinav Garg, and Changwoo Han. A review
of on-device fully neural end-to-end automatic speech recognition al-
gorithms. In 2020 54th Asilomar Conference on Signals, Systems,
and Computers, pages 277–283. IEEE, 2020.

[100] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[101] Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp
Hochreiter. Self-normalizing neural networks. Advances in neural
information processing systems, 30, 2017.

[102] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet
classification with deep convolutional neural networks. In Peter L.
Bartlett, Fernando C. N. Pereira, Christopher J. C. Burges, Léon
Bottou, and Kilian Q. Weinberger, editors, Advances in Neural In-
formation Processing Systems 25: 26th Annual Conference on Neural

190

http://proceedings.mlr.press/v119/kang20a.html
http://proceedings.mlr.press/v119/kang20a.html
https://doi.org/10.1109/72.80236
https://doi.org/10.1109/72.80236

BIBLIOGRAPHY

Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States, pages 1106–
1114, 2012. URL https://proceedings.neurips.cc/paper/2012/
hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html.

[103] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber
Fallah. A survey of deep learning applications to autonomous vehicle
control. IEEE Transactions on Intelligent Transportation Systems,
22(2):712–733, 2020.

[104] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge.
., 2015.

[105] Yann LeCun, John S. Denker, and Sara A. Solla. Optimal
brain damage. In David S. Touretzky, editor, Advances in Neu-
ral Information Processing Systems 2, [NIPS Conference, Den-
ver, Colorado, USA, November 27-30, 1989], pages 598–605.
Morgan Kaufmann, 1989. URL http://papers.nips.cc/paper/
250-optimal-brain-damage.

[106] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner.
Gradient-based learning applied to document recognition. Proc.
IEEE, 86(11):2278–2324, 1998. doi: 10.1109/5.726791. URL https:
//doi.org/10.1109/5.726791.

[107] N. Lee, T. Ajanthan, and P. H. S. Torr. Snip: single-shot network
pruning based on connection sensitivity. In ICLR, 2019.

[108] Carl Lemaire, Andrew Achkar, and Pierre-Marc Jodoin. Structured
pruning of neural networks with budget-aware regularization. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 9108–9116, 2019.

[109] Eric Mingjie Li. Rethinking the value of network prun-
ing - implementation, 2019. URL https://github.
com/Eric-mingjie/rethinking-network-pruning/blob/
2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/
network-slimming/main.py#L67. [Online; accessed 23-June-2023].

[110] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter
Graf. Pruning filters for efficient convnets. In 5th International Con-
ference on Learning Representations, ICLR 2017, Toulon, France,
April 24-26, 2017, Conference Track Proceedings. OpenReview.net,
2017. URL https://openreview.net/forum?id=rJqFGTslg.

191

https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
https://proceedings.neurips.cc/paper/2012/hash/c399862d3b9d6b76c8436e924a68c45b-Abstract.html
http://papers.nips.cc/paper/250-optimal-brain-damage
http://papers.nips.cc/paper/250-optimal-brain-damage
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/5.726791
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://github.com/Eric-mingjie/rethinking-network-pruning/blob/2ac473d70a09810df888e932bb394f225f9ed2d1/cifar/network-slimming/main.py#L67
https://openreview.net/forum?id=rJqFGTslg

BIBLIOGRAPHY

[111] Zhuo Li, Hengyi Li, and Lin Meng. Model compression for deep
neural networks: A survey. Computers, 12(3):60, 2023.

[112] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiao-
tong Zhang. Pruning and quantization for deep neural network
acceleration: A survey. Neurocomputing, 461:370–403, 2021. doi:
10.1016/j.neucom.2021.07.045. URL https://doi.org/10.1016/j.
neucom.2021.07.045.

[113] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xiaotong
Zhang. Pruning and quantization for deep neural network accelera-
tion: A survey. Neurocomputing, 461:370–403, 2021.

[114] Siyu Liao, Ashkan Samiee, Chunhua Deng, Yu Bai, and Bo Yuan.
Compressing deep neural networks using toeplitz matrix: Algorithm
design and fpga implementation. In ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1443–1447. IEEE, 2019.

[115] Ji Lin, Yongming Rao, Jiwen Lu, and Jie Zhou. Runtime neural
pruning. In Isabelle Guyon, Ulrike von Luxburg, Samy Bengio,
Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Ro-
man Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
2181–2191, 2017. URL https://proceedings.neurips.cc/paper/
2017/hash/a51fb975227d6640e4fe47854476d133-Abstract.html.

[116] Jinhua Lin and Yu Yao. A fast algorithm for convolutional neural
networks using tile-based fast fourier transforms. Neural Process.
Lett., 50(2):1951–1967, 2019. doi: 10.1007/s11063-019-09981-z. URL
https://doi.org/10.1007/s11063-019-09981-z.

[117] Zhouhan Lin, Matthieu Courbariaux, Roland Memisevic, and Yoshua
Bengio. Neural networks with few multiplications. In Yoshua Bengio
and Yann LeCun, editors, 4th International Conference on Learning
Representations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings, 2016. URL http://arxiv.org/abs/
1510.03009.

[118] Chenxi Liu, Liang-Chieh Chen, Florian Schroff, Hartwig Adam, Wei
Hua, Alan L. Yuille, and Li Fei-Fei. Auto-deeplab: Hierarchical neural
architecture search for semantic image segmentation. In IEEE Con-
ference on Computer Vision and Pattern Recognition, CVPR 2019,

192

https://doi.org/10.1016/j.neucom.2021.07.045
https://doi.org/10.1016/j.neucom.2021.07.045
https://proceedings.neurips.cc/paper/2017/hash/a51fb975227d6640e4fe47854476d133-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/a51fb975227d6640e4fe47854476d133-Abstract.html
https://doi.org/10.1007/s11063-019-09981-z
http://arxiv.org/abs/1510.03009
http://arxiv.org/abs/1510.03009

BIBLIOGRAPHY

Long Beach, CA, USA, June 16-20, 2019, pages 82–92. Computer Vi-
sion Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00017. URL
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_
Auto-DeepLab_Hierarchical_Neural_Architecture_Search_
for_Semantic_Image_Segmentation_CVPR_2019_paper.html.

[119] Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: differen-
tiable architecture search. In 7th International Conference on Learn-
ing Representations, ICLR 2019, New Orleans, LA, USA, May 6-
9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=S1eYHoC5FX.

[120] Kang Liu. Pytorch models for cifar-10, 2020. URL https://github.
com/kuangliu/pytorch-cifar.

[121] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy,
Scott E. Reed, Cheng-Yang Fu, and Alexander C. Berg. SSD: single
shot multibox detector. In Bastian Leibe, Jiri Matas, Nicu Sebe, and
Max Welling, editors, Computer Vision - ECCV 2016 - 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Pro-
ceedings, Part I, volume 9905 of Lecture Notes in Computer Science,
pages 21–37. Springer, 2016. doi: 10.1007/978-3-319-46448-0_2.
URL https://doi.org/10.1007/978-3-319-46448-0_2.

[122] Xingyu Liu, Jeff Pool, Song Han, and William J Dally. Effi-
cient sparse-winograd convolutional neural networks. arXiv preprint
arXiv:1802.06367, 2018.

[123] Z. Liu, M. Sun, T. Zhou, G. Huang, and T. Darrell. Rethink-
ing the value of network pruning. In ICLR, 2019. URL https:
//openreview.net/forum?id=rJlnB3C5Ym.

[124] Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan,
and Changshui Zhang. Learning efficient convolutional networks
through network slimming. In IEEE International Conference on
Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017,
pages 2755–2763. IEEE Computer Society, 2017. doi: 10.1109/ICCV.
2017.298. URL https://doi.org/10.1109/ICCV.2017.298.

[125] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convo-
lutional networks for semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern recognition, pages
3431–3440, 2015.

193

http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Liu_Auto-DeepLab_Hierarchical_Neural_Architecture_Search_for_Semantic_Image_Segmentation_CVPR_2019_paper.html
https://openreview.net/forum?id=S1eYHoC5FX
https://openreview.net/forum?id=S1eYHoC5FX
https://github.com/kuangliu/pytorch-cifar
https://github.com/kuangliu/pytorch-cifar
https://doi.org/10.1007/978-3-319-46448-0_2
https://openreview.net/forum?id=rJlnB3C5Ym
https://openreview.net/forum?id=rJlnB3C5Ym
https://doi.org/10.1109/ICCV.2017.298

BIBLIOGRAPHY

[126] I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with
warm restarts. In ICLR (Poster), 2017.

[127] Christos Louizos, Max Welling, and Diederik P Kingma. Learning
sparse neural networks through l_0 regularization. arXiv preprint
arXiv:1712.01312, 2017.

[128] Christos Louizos, Max Welling, and Diederik P. Kingma. Learning
sparse neural networks through l_0 regularization. In 6th Interna-
tional Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track Pro-
ceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?id=H1Y8hhg0b.

[129] Liqiang Lu and Yun Liang. Spwa: An efficient sparse winograd con-
volutional neural networks accelerator on fpgas. In Proceedings of the
55th Annual Design Automation Conference, pages 1–6, 2018.

[130] Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level
pruning method for deep neural network compression. In IEEE In-
ternational Conference on Computer Vision, ICCV 2017, Venice,
Italy, October 22-29, 2017, pages 5068–5076. IEEE Computer So-
ciety, 2017. doi: 10.1109/ICCV.2017.541. URL https://doi.org/
10.1109/ICCV.2017.541.

[131] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun. Shuf-
flenet v2: Practical guidelines for efficient cnn architecture design.
In Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu, and Yair
Weiss, editors, Computer Vision – ECCV 2018, pages 122–138,
Cham, 2018. Springer International Publishing. ISBN 978-3-030-
01264-9.

[132] E. Malach, G. Yehudai, S. Shalev-Shwartz, and O. Shamir. Proving
the lottery ticket hypothesis: Pruning is all you need. In ICML, 2020.
URL http://proceedings.mlr.press/v119/malach20a.html.

[133] John McCarthy, Marvin Minsky, Nathaniel Rochester, and Claude
Shannon. A proposal for the dartmouth summer research project
on artificial intelligence. Available at AI Magazine Vol 27 No 4,
https://www.aaai.org/ojs/index.php/aimagazine/article/view/1904,
1956.

194

https://openreview.net/forum?id=H1Y8hhg0b
https://openreview.net/forum?id=H1Y8hhg0b
https://doi.org/10.1109/ICCV.2017.541
https://doi.org/10.1109/ICCV.2017.541
http://proceedings.mlr.press/v119/malach20a.html

BIBLIOGRAPHY

[134] Warren S McCulloch and Walter Pitts. A logical calculus of the
ideas immanent in nervous activity. The bulletin of mathematical
biophysics, 5:115–133, 1943.

[135] Ian McGraw, Rohit Prabhavalkar, Raziel Alvarez, Montse Gonzalez
Arenas, Kanishka Rao, David Rybach, Ouais Alsharif, Haşim Sak,
Alexander Gruenstein, Françoise Beaufays, et al. Personalized speech
recognition on mobile devices. In 2016 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), pages
5955–5959. IEEE, 2016.

[136] Risto Miikkulainen, Jason Zhi Liang, Elliot Meyerson, Aditya Rawal,
Daniel Fink, Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak
Navruzyan, Nigel Duffy, and Babak Hodjat. Evolving deep neural
networks. CoRR, abs/1703.00548, 2017. URL http://arxiv.org/
abs/1703.00548.

[137] S.-I. Mirzadeh, M. Farajtabar, A. Li, N. Levine, A. Matsukawa, and
H. Ghasemzadeh. Improved knowledge distillation via teacher as-
sistant. In AAAI, 2020. URL https://aaai.org/ojs/index.php/
AAAI/article/view/5963.

[138] Dmitry Molchanov, Arsenii Ashukha, and Dmitry P. Vetrov. Vari-
ational dropout sparsifies deep neural networks. In Doina Pre-
cup and Yee Whye Teh, editors, Proceedings of the 34th Interna-
tional Conference on Machine Learning, ICML 2017, Sydney, NSW,
Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 2498–2507. PMLR, 2017. URL http:
//proceedings.mlr.press/v70/molchanov17a.html.

[139] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan
Kautz. Pruning convolutional neural networks for resource effi-
cient inference. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJGCiw5gl.

[140] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and
Jan Kautz. Importance estimation for neural network pruning.
In IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 11264–11272. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.01152. URL http://openaccess.thecvf.com/

195

http://arxiv.org/abs/1703.00548
http://arxiv.org/abs/1703.00548
https://aaai.org/ojs/index.php/AAAI/article/view/5963
https://aaai.org/ojs/index.php/AAAI/article/view/5963
http://proceedings.mlr.press/v70/molchanov17a.html
http://proceedings.mlr.press/v70/molchanov17a.html
https://openreview.net/forum?id=SJGCiw5gl
https://openreview.net/forum?id=SJGCiw5gl
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html

BIBLIOGRAPHY

content_CVPR_2019/html/Molchanov_Importance_Estimation_
for_Neural_Network_Pruning_CVPR_2019_paper.html.

[141] Michael Mozer and Paul Smolensky. Skeletonization: A
technique for trimming the fat from a network via rele-
vance assessment. In David S. Touretzky, editor, Advances
in Neural Information Processing Systems 1, [NIPS Confer-
ence, Denver, Colorado, USA, 1988], pages 107–115. Mor-
gan Kaufmann, 1988. URL http://papers.nips.cc/paper/
119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment.

[142] Nils J Nilsson. Artificial intelligence: a new synthesis. Morgan Kauf-
mann, 1998.

[143] Nvidia. 8-bit inference with tensorrt. https://developer.nvidia.
com/tensorrt, 2021. Accessed: 26/05/2023.

[144] Alan V Oppenheim, Alan S Willsky, Syed Hamid Nawab, and Jian-
Jiun Ding. Signals and systems, volume 2. Prentice hall Upper Saddle
River, NJ, 1997.

[145] L. Orseau, M. Hutter, and O. Rivasplata. Logarith-
mic pruning is all you need. In NeurIPS 2020, 2020.
URL https://proceedings.neurips.cc/paper/2020/hash/
1e9491470749d5b0e361ce4f0b24d037-Abstract.html.

[146] Nikolaos Passalis and Anastasios Tefas. Learning deep representa-
tions with probabilistic knowledge transfer. In Vittorio Ferrari, Mar-
tial Hebert, Cristian Sminchisescu, and Yair Weiss, editors, Computer
Vision - ECCV 2018 - 15th European Conference, Munich, Germany,
September 8-14, 2018, Proceedings, Part XI, volume 11215 of Lec-
ture Notes in Computer Science, pages 283–299. Springer, 2018. doi:
10.1007/978-3-030-01252-6_17. URL https://doi.org/10.1007/
978-3-030-01252-6_17.

[147] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James
Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia
Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Ed-
ward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance
deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 32:

196

http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Molchanov_Importance_Estimation_for_Neural_Network_Pruning_CVPR_2019_paper.html
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
http://papers.nips.cc/paper/119-skeletonization-a-technique-for-trimming-the-fat-from-a-network-via-relevance-assessment
https://developer.nvidia.com/tensorrt
https://developer.nvidia.com/tensorrt
https://proceedings.neurips.cc/paper/2020/hash/1e9491470749d5b0e361ce4f0b24d037-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1e9491470749d5b0e361ce4f0b24d037-Abstract.html
https://doi.org/10.1007/978-3-030-01252-6_17
https://doi.org/10.1007/978-3-030-01252-6_17

BIBLIOGRAPHY

Annual Conference on Neural Information Processing Systems 2019,
NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pages
8024–8035, 2019. URL https://proceedings.neurips.cc/paper/
2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

[148] A. Pensia, S. Rajput, A. Nagle, H. Vishwakarma, and D. S.
Papailiopoulos. Optimal lottery tickets via subset sum: Log-
arithmic over-parameterization is sufficient. In NeurIPS 2020,
2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1b742ae215adf18b75449c6e272fd92d-Abstract.html.

[149] Adam Polyak and Lior Wolf. Channel-level acceleration of deep face
representations. IEEE Access, 3:2163–2175, 2015. doi: 10.1109/
ACCESS.2015.2494536. URL https://doi.org/10.1109/ACCESS.
2015.2494536.

[150] Boris T Polyak. Some methods of speeding up the convergence of it-
eration methods. Ussr computational mathematics and mathematical
physics, 4(5):1–17, 1964.

[151] Harry Pratt, Bryan M. Williams, Frans Coenen, and Yalin Zheng.
FCNN: fourier convolutional neural networks. In Michelangelo Ceci,
Jaakko Hollmén, Ljupco Todorovski, Celine Vens, and Saso Dzeroski,
editors, Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD 2017, Skopje, Macedonia,
September 18-22, 2017, Proceedings, Part I, volume 10534 of Lec-
ture Notes in Computer Science, pages 786–798. Springer, 2017. doi:
10.1007/978-3-319-71249-9_47. URL https://doi.org/10.1007/
978-3-319-71249-9_47.

[152] Pytorch. Pytorch weights initialisation. Software, 2023. URL https:
//pytorch.org/docs/stable/nn.init.html.

[153] Pytorch. Resnet-18 implementation. Software, 2023. URL
https://github.com/pytorch/vision/blob/main/torchvision/
models/resnet.py.

[154] PyTorch. Pytorch vision models. https://pytorch.org/vision/
master/models.html, Accessed 2023. Accessed on May 24, 2023.

[155] Qualcomm. Snapdragon neural processing engine
sdk. https://developer.qualcomm.com/software/
qualcomm-neural-processing-sdk, 2021. Accessed: 26/05/2023.

197

https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1b742ae215adf18b75449c6e272fd92d-Abstract.html
https://doi.org/10.1109/ACCESS.2015.2494536
https://doi.org/10.1109/ACCESS.2015.2494536
https://doi.org/10.1007/978-3-319-71249-9_47
https://doi.org/10.1007/978-3-319-71249-9_47
https://pytorch.org/docs/stable/nn.init.html
https://pytorch.org/docs/stable/nn.init.html
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://github.com/pytorch/vision/blob/main/torchvision/models/resnet.py
https://pytorch.org/vision/master/models.html
https://pytorch.org/vision/master/models.html
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk
https://developer.qualcomm.com/software/qualcomm-neural-processing-sdk

BIBLIOGRAPHY

[156] Ramchalam Kinattinkara Ramakrishnan, Eyyüb Sari, and
Vahid Partovi Nia. Differentiable mask for pruning convolu-
tional and recurrent networks. In 17th Conference on Computer and
Robot Vision, CRV 2020, Ottawa, ON, Canada, May 13-15, 2020,
pages 222–229. IEEE, 2020. doi: 10.1109/CRV50864.2020.00037.
URL https://doi.org/10.1109/CRV50864.2020.00037.

[157] V. Ramanujan, M. Wortsman, A. Kembhavi, A. Farhadi, and
M. Rastegari. What’s hidden in a randomly weighted neural net-
work? In CVPR, 2020.

[158] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yu-
taka I. Leon-Suematsu, Jie Tan, Quoc V. Le, and Alexey Kurakin.
Large-scale evolution of image classifiers. In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney, NSW, Australia,
6-11 August 2017, volume 70 of Proceedings of Machine Learning Re-
search, pages 2902–2911. PMLR, 2017. URL http://proceedings.
mlr.press/v70/real17a.html.

[159] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali
Farhadi. You only look once: Unified, real-time object detection. In
2016 IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2016, Las Vegas, NV, USA, June 27-30, 2016, pages 779–788.
IEEE Computer Society, 2016. doi: 10.1109/CVPR.2016.91. URL
https://doi.org/10.1109/CVPR.2016.91.

[160] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun.
Faster R-CNN: towards real-time object detection with region
proposal networks. In Corinna Cortes, Neil D. Lawrence,
Daniel D. Lee, Masashi Sugiyama, and Roman Garnett, edi-
tors, Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015,
December 7-12, 2015, Montreal, Quebec, Canada, pages 91–99,
2015. URL https://proceedings.neurips.cc/paper/2015/hash/
14bfa6bb14875e45bba028a21ed38046-Abstract.html.

[161] Yi Ren, Yangjun Ruan, Xu Tan, Tao Qin, Sheng Zhao, Zhou Zhao,
and Tie-Yan Liu. Fastspeech: Fast, robust and controllable text to
speech. Advances in neural information processing systems, 32, 2019.

[162] Canadian Institute For Advanced Research. Cifar-10 and cifar-100
datasets. https://www.cs.toronto.edu/~kriz/cifar.html, 2009.

198

https://doi.org/10.1109/CRV50864.2020.00037
http://proceedings.mlr.press/v70/real17a.html
http://proceedings.mlr.press/v70/real17a.html
https://doi.org/10.1109/CVPR.2016.91
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://proceedings.neurips.cc/paper/2015/hash/14bfa6bb14875e45bba028a21ed38046-Abstract.html
https://www.cs.toronto.edu/~kriz/cifar.html

BIBLIOGRAPHY

[163] Facebook AI Research. Openlth: A framework for lottery tickets
and beyond, 2020. URL https://github.com/facebookresearch/
open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/
datasets/cifar10.py#L46C50-L46C50. [Online; accessed 23-June-
2023].

[164] Herbert Robbins and Sutton Monro. A stochastic approximation
method. The annals of mathematical statistics, pages 400–407, 1951.

[165] A. Romero, N. Ballas, S. Ebrahimi Kahou, A. Chassang, C. Gatta,
and Y. Bengio. Fitnets: Hints for thin deep nets. In ICLR, 2015.
URL http://arxiv.org/abs/1412.6550.

[166] Frank Rosenblatt. The perceptron: a probabilistic model for infor-
mation storage and organization in the brain. Psychological review,
65(6):386, 1958.

[167] Frank Rosenblatt. Principles of neurodynamics. perceptrons and the
theory of brain mechanisms. Technical report, Cornell Aeronautical
Lab Inc Buffalo NY, 1961.

[168] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning internal representations by error propagation. Technical re-
port, California Univ San Diego La Jolla Inst for Cognitive Science,
1985.

[169] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams.
Learning representations by back-propagating errors. nature, 323
(6088):533–536, 1986.

[170] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev
Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya
Khosla, Michael S. Bernstein, Alexander C. Berg, and Li Fei-Fei.
Imagenet large scale visual recognition challenge. Int. J. Comput.
Vis., 115(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y. URL
https://doi.org/10.1007/s11263-015-0816-y.

[171] M. Sandler, A. G. Howard, M. Zhu, A. Zhmoginov, and L.-C.
Chen. Mobilenetv2: Inverted residuals and linear bottlenecks.
In CVPR, 2018. doi: 10.1109/CVPR.2018.00474. URL http:
//openaccess.thecvf.com/content_cvpr_2018/html/Sandler_
MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html.

[172] Jonathan Schwarz, Siddhant Jayakumar, Razvan Pascanu, Peter E
Latham, and Yee Teh. Powerpropagation: A sparsity inducing weight

199

https://github.com/facebookresearch/open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/datasets/cifar10.py#L46C50-L46C50
https://github.com/facebookresearch/open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/datasets/cifar10.py#L46C50-L46C50
https://github.com/facebookresearch/open_lth/blob/2ce732fe48abd5a80c10a153c45d397b048e980c/datasets/cifar10.py#L46C50-L46C50
http://arxiv.org/abs/1412.6550
https://doi.org/10.1007/s11263-015-0816-y
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Sandler_MobileNetV2_Inverted_Residuals_CVPR_2018_paper.html

BIBLIOGRAPHY

reparameterisation. Advances in neural information processing sys-
tems, 34:28889–28903, 2021.

[173] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Lau-
rent Sifre, George Van Den Driessche, Julian Schrittwieser, Ioannis
Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. nature,
529(7587):484–489, 2016.

[174] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis
Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot, Laurent
Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforce-
ment learning algorithm that masters chess, shogi, and go through
self-play. Science, 362(6419):1140–1144, 2018.

[175] Karen Simonyan and Andrew Zisserman. Very deep convolutional
networks for large-scale image recognition. In Yoshua Bengio and
Yann LeCun, editors, 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http://arxiv.org/abs/
1409.1556.

[176] Daniel Soudry, Itay Hubara, and Ron Meir. Expectation back-
propagation: Parameter-free training of multilayer neural networks
with continuous or discrete weights. In Zoubin Ghahramani, Max
Welling, Corinna Cortes, Neil D. Lawrence, and Kilian Q. Wein-
berger, editors, Advances in Neural Information Processing Systems
27: Annual Conference on Neural Information Processing Systems
2014, December 8-13 2014, Montreal, Quebec, Canada, pages 963–
971, 2014. URL https://proceedings.neurips.cc/paper/2014/
hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html.

[177] Kartik Sreenivasan, Jy-yong Sohn, Liu Yang, Matthew Grinde, Al-
liot Nagle, Hongyi Wang, Kangwook Lee, and Dimitris S. Papail-
iopoulos. Rare gems: Finding lottery tickets at initialization. CoRR,
abs/2202.12002, 2022. URL https://arxiv.org/abs/2202.12002.

[178] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya
Sutskever, and Ruslan Salakhutdinov. Dropout: a simple way to
prevent neural networks from overfitting. J. Mach. Learn. Res., 15
(1):1929–1958, 2014. doi: 10.5555/2627435.2670313. URL https:
//dl.acm.org/doi/10.5555/2627435.2670313.

200

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://proceedings.neurips.cc/paper/2014/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/076a0c97d09cf1a0ec3e19c7f2529f2b-Abstract.html
https://arxiv.org/abs/2202.12002
https://dl.acm.org/doi/10.5555/2627435.2670313
https://dl.acm.org/doi/10.5555/2627435.2670313

BIBLIOGRAPHY

[179] Hugo Steinhaus et al. Sur la division des corps matériels en parties.
Bull. Acad. Polon. Sci, 1(804):801, 1956.

[180] Volker Strassen et al. Gaussian elimination is not optimal. Nu-
merische mathematik, 13(4):354–356, 1969.

[181] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton.
On the importance of initialization and momentum in deep learning.
In International conference on machine learning, pages 1139–1147.
PMLR, 2013.

[182] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Ef-
ficient processing of deep neural networks: A tutorial and survey.
Proceedings of the IEEE, 105(12):2295–2329, 2017.

[183] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E.
Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and
Andrew Rabinovich. Going deeper with convolutions. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2015, Boston, MA, USA, June 7-12, 2015, pages 1–9. IEEE Com-
puter Society, 2015. doi: 10.1109/CVPR.2015.7298594. URL https:
//doi.org/10.1109/CVPR.2015.7298594.

[184] M. Tan and Q. V. Le. Efficientnet: Rethinking model scaling
for convolutional neural networks. In ICML, volume 97 of Pro-
ceedings of Machine Learning Research. PMLR, 2019. URL http:
//proceedings.mlr.press/v97/tan19a.html.

[185] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan, Mark
Sandler, Andrew Howard, and Quoc V. Le. Mnasnet: Platform-
aware neural architecture search for mobile. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2019, Long
Beach, CA, USA, June 16-20, 2019, pages 2820–2828. Computer
Vision Foundation / IEEE, 2019. doi: 10.1109/CVPR.2019.00293.
URL http://openaccess.thecvf.com/content_CVPR_2019/html/
Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_
for_Mobile_CVPR_2019_paper.html.

[186] H. Tanaka, D. Kunin, D. L. Yamins, and S. Ganguli. Pruning neural
networks without any data by iteratively conserving synaptic flow.
In NeurIPS, 2020.

201

https://doi.org/10.1109/CVPR.2015.7298594
https://doi.org/10.1109/CVPR.2015.7298594
http://proceedings.mlr.press/v97/tan19a.html
http://proceedings.mlr.press/v97/tan19a.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Tan_MnasNet_Platform-Aware_Neural_Architecture_Search_for_Mobile_CVPR_2019_paper.html

BIBLIOGRAPHY

[187] Tencent. Ncnn: A high-performance neural network inference frame-
work optimized for the mobile platform. https://github.com/
Tencent/ncnn, 2021. Accessed: 26/05/2023.

[188] Robert Tibshirani. Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society Series B: Statistical Method-
ology, 58(1):267–288, 1996.

[189] Rishabh Tiwari, Udbhav Bamba, Arnav Chavan, and Deepak K
Gupta. Chipnet: Budget-aware pruning with heaviside continuous
approximations. arXiv preprint arXiv:2102.07156, 2021.

[190] Antonio Torralba, Rob Fergus, and William T. Freeman. 80 million
tiny images: A large data set for nonparametric object and scene
recognition. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 30(11):1958–1970, 2008. doi: 10.1109/TPAMI.2008.128.

[191] Inc. Uber Technologies. masked_layers.py in deconstructing-
lottery-tickets repository, 2019. URL https://github.com/
uber-research/deconstructing-lottery-tickets/blob/
master/masked_layers.py. Licensed under the Uber Non-
Commercial License.

[192] Vincent Vanhoucke, Andrew Senior, and Mark Z. Mao. Improving the
speed of neural networks on cpus. In Deep Learning and Unsupervised
Feature Learning Workshop, NIPS 2011, 2011.

[193] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Atten-
tion is all you need. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and
Roman Garnett, editors, Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing
Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pages
5998–6008, 2017. URL https://proceedings.neurips.cc/paper/
2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

[194] Alvin Wan. Neural-backed decision trees source code, 2020. URL
https://github.com/alvinwan/neural-backed-decision-trees.

[195] Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin,
Suzanne Petryk, Sarah Adel Bargal, and Joseph E. Gonzalez. Nbdt:
Neural-backed decision trees, 2020.

202

https://github.com/Tencent/ncnn
https://github.com/Tencent/ncnn
https://github.com/uber-research/deconstructing-lottery-tickets/blob/master/masked_layers.py
https://github.com/uber-research/deconstructing-lottery-tickets/blob/master/masked_layers.py
https://github.com/uber-research/deconstructing-lottery-tickets/blob/master/masked_layers.py
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
https://github.com/alvinwan/neural-backed-decision-trees

BIBLIOGRAPHY

[196] C. Wang, G. Zhang, and R. B. Grosse. Picking winning tickets before
training by preserving gradient flow. In ICLR, 2020.

[197] Xuan Wang, Chao Wang, Jing Cao, Lei Gong, and Xuehai Zhou.
Winonn: Optimizing fpga-based convolutional neural network ac-
celerators using sparse winograd algorithm. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 39(11):
4290–4302, 2020.

[198] Zi Wang, Chengcheng Li, and Xiangyang Wang. Convolutional neu-
ral network pruning with structural redundancy reduction. In IEEE
Conference on Computer Vision and Pattern Recognition, CVPR
2021, virtual, June 19-25, 2021, pages 14913–14922. Computer Vi-
sion Foundation / IEEE, 2021. doi: 10.1109/CVPR46437.2021.01467.
URL https://openaccess.thecvf.com/content/CVPR2021/
html/Wang_Convolutional_Neural_Network_Pruning_With_
Structural_Redundancy_Reduction_CVPR_2021_paper.html.

[199] Philip D Wasserman and Tom Schwartz. Neural networks. ii. what
are they and why is everybody so interested in them now? IEEE
expert, 3(1):10–15, 1988.

[200] R. Clinton Whaley, Antoine Petitet, and Jack J. Dongarra.
Automated empirical optimizations of software and the AT-
LAS project. Parallel Comput., 27(1-2):3–35, 2001. doi: 10.
1016/S0167-8191(00)00087-9. URL https://doi.org/10.1016/
S0167-8191(00)00087-9.

[201] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas
Elsken, Arber Zela, Debadeepta Dey, and Frank Hutter. Neural ar-
chitecture search: Insights from 1000 papers. CoRR, abs/2301.08727,
2023. doi: 10.48550/arXiv.2301.08727. URL https://doi.org/10.
48550/arXiv.2301.08727.

[202] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. SNAS: stochas-
tic neural architecture search. In 7th International Conference on
Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/
forum?id=rylqooRqK7.

[203] Hanyuan Xu. Image classification on tiny imagenet, 2018. URL
https://github.com/DennisHanyuanXu/Tiny-ImageNet.

203

https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://openaccess.thecvf.com/content/CVPR2021/html/Wang_Convolutional_Neural_Network_Pruning_With_Structural_Redundancy_Reduction_CVPR_2021_paper.html
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.1016/S0167-8191(00)00087-9
https://doi.org/10.48550/arXiv.2301.08727
https://doi.org/10.48550/arXiv.2301.08727
https://openreview.net/forum?id=rylqooRqK7
https://openreview.net/forum?id=rylqooRqK7
https://github.com/DennisHanyuanXu/Tiny-ImageNet

BIBLIOGRAPHY

[204] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi,
Qi Tian, and Hongkai Xiong. PC-DARTS: partial channel con-
nections for memory-efficient architecture search. In 8th Interna-
tional Conference on Learning Representations, ICLR 2020, Addis
Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020. URL
https://openreview.net/forum?id=BJlS634tPr.

[205] Tien-Ju Yang, Yu-Hsin Chen, and Vivienne Sze. Designing energy-
efficient convolutional neural networks using energy-aware pruning.
In 2017 IEEE Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, pages 6071–
6079. IEEE Computer Society, 2017. doi: 10.1109/CVPR.2017.643.
URL https://doi.org/10.1109/CVPR.2017.643.

[206] Junho Yim, Donggyu Joo, Ji-Hoon Bae, and Junmo Kim. A gift from
knowledge distillation: Fast optimization, network minimization and
transfer learning. In 2017 IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26,
2017, pages 7130–7138. IEEE Computer Society, 2017. doi: 10.1109/
CVPR.2017.754. URL https://doi.org/10.1109/CVPR.2017.754.

[207] Zhonghui You, Kun Yan, Jinmian Ye, Meng Ma, and Ping
Wang. Gate decorator: Global filter pruning method for accel-
erating deep convolutional neural networks. In Hanna M. Wal-
lach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-Buc,
Emily B. Fox, and Roman Garnett, editors, Advances in Neu-
ral Information Processing Systems 32: Annual Conference on
Neural Information Processing Systems 2019, NeurIPS 2019, De-
cember 8-14, 2019, Vancouver, BC, Canada, pages 2130–2141,
2019. URL https://proceedings.neurips.cc/paper/2019/hash/
b51a15f382ac914391a58850ab343b00-Abstract.html.

[208] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I. Morariu,
Xintong Han, Mingfei Gao, Ching-Yung Lin, and Larry S. Davis.
NISP: pruning networks using neuron importance score propaga-
tion. In 2018 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2018, Salt Lake City, UT, USA, June
18-22, 2018, pages 9194–9203. Computer Vision Foundation /
IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.00958.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Yu_NISP_Pruning_Networks_CVPR_2018_paper.html.

204

https://openreview.net/forum?id=BJlS634tPr
https://doi.org/10.1109/CVPR.2017.643
https://doi.org/10.1109/CVPR.2017.754
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/b51a15f382ac914391a58850ab343b00-Abstract.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Yu_NISP_Pruning_Networks_CVPR_2018_paper.html

BIBLIOGRAPHY

[209] S. Zagoruyko and N. Komodakis. Paying more attention to attention:
Improving the performance of convolutional neural networks via at-
tention transfer. In ICLR, 2017. URL https://openreview.net/
forum?id=Sks9_ajex.

[210] Matthew D Zeiler. Adadelta: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

[211] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun. Shuf-
flenet: An extremely efficient convolutional neural network for mobile
devices. In 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 6848–6856, 2018. doi: 10.1109/CVPR.
2018.00716.

[212] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu. Deep mu-
tual learning. In CVPR, 2018. doi: 10.1109/CVPR.2018.00454.
URL http://openaccess.thecvf.com/content_cvpr_2018/html/
Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html.

[213] Chenglong Zhao, Bingbing Ni, Jian Zhang, Qiwei Zhao, Wenjun
Zhang, and Qi Tian. Variational convolutional neural network
pruning. In IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2019, Long Beach, CA, USA, June 16-20, 2019,
pages 2780–2789. Computer Vision Foundation / IEEE, 2019. doi:
10.1109/CVPR.2019.00289. URL http://openaccess.thecvf.com/
content_CVPR_2019/html/Zhao_Variational_Convolutional_
Neural_Network_Pruning_CVPR_2019_paper.html.

[214] Aojun Zhou, Anbang Yao, Yiwen Guo, Lin Xu, and Yurong Chen.
Incremental network quantization: Towards lossless cnns with low-
precision weights. In 5th International Conference on Learning Rep-
resentations, ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=HyQJ-mclg.

[215] H. Zhou, J. Lan, R. Liu, and J. Yosinski. Deconstructing lottery
tickets: Zeros, signs, and the supermask. In NeurIPS, 2019.

[216] Shuchang Zhou, Yuxin Wu, Zekun Ni, Xinyu Zhou, He Wen,
and Yuheng Zou. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients. arXiv preprint
arXiv:1606.06160, 2016.

205

https://openreview.net/forum?id=Sks9_ajex
https://openreview.net/forum?id=Sks9_ajex
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Deep_Mutual_Learning_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
http://openaccess.thecvf.com/content_CVPR_2019/html/Zhao_Variational_Convolutional_Neural_Network_Pruning_CVPR_2019_paper.html
https://openreview.net/forum?id=HyQJ-mclg
https://openreview.net/forum?id=HyQJ-mclg

BIBLIOGRAPHY

[217] Yuefu Zhou, Ya Zhang, Yan-Feng Wang, and Qi Tian. Accelerate
CNN via recursive bayesian pruning. In 2019 IEEE/CVF Interna-
tional Conference on Computer Vision, ICCV 2019, Seoul, Korea
(South), October 27 - November 2, 2019, pages 3305–3314. IEEE,
2019. doi: 10.1109/ICCV.2019.00340. URL https://doi.org/10.
1109/ICCV.2019.00340.

[218] Zhuangwei Zhuang, Mingkui Tan, Bohan Zhuang, Jing Liu, Yong
Guo, Qingyao Wu, Junzhou Huang, and Jin-Hui Zhu. Discrimination-
aware channel pruning for deep neural networks. In Samy
Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grau-
man, Nicolò Cesa-Bianchi, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 31: Annual Confer-
ence on Neural Information Processing Systems 2018, NeurIPS
2018, December 3-8, 2018, Montréal, Canada, pages 883–894,
2018. URL https://proceedings.neurips.cc/paper/2018/hash/
55a7cf9c71f1c9c495413f934dd1a158-Abstract.html.

[219] Barret Zoph and Quoc V. Le. Neural architecture search with re-
inforcement learning. In 5th International Conference on Learn-
ing Representations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=r1Ue8Hcxg.

206

https://doi.org/10.1109/ICCV.2019.00340
https://doi.org/10.1109/ICCV.2019.00340
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/55a7cf9c71f1c9c495413f934dd1a158-Abstract.html
https://openreview.net/forum?id=r1Ue8Hcxg
https://openreview.net/forum?id=r1Ue8Hcxg

	Cover
	Abstract
	Résumé
	List of Figures
	List of Tables
	List of Acronyms
	Remerciements
	Introduction
	Context
	Industrial Context
	Why Deep learning ?
	Challenges
	Contributions
	Outline

	Deep Learning Overview
	Introduction
	Early Architectures
	Perceptron
	Multilayer Perceptron

	Neural Network Training
	Functional Definition
	Loss Function and Regularisation
	Loss Optimisation

	Convolutional Neural Networks for Computer Vision
	Building Blocks
	Architectures Evolution
	Architectures Used in Experiments

	Datasets
	CIFAR-10
	CIFAR-100
	TinyImageNet
	Train, Validation and Test Sets

	Deep Neural Network Compression
	Introduction
	Accelerating Computation in Neural Networks
	Fast Fourier Transform
	Optimised Matrix Multiplication Algorithms
	Leveraging Matrix Structures
	Practical Applications and Limitations

	Teaching Paradigm
	Knowledge Distillation
	Feature-Map Matching
	Deep Mutual Learning
	Teacher Assistant
	Alternative Distillation Losses

	Architecture Design
	Building Blocks for Efficient Architecture Design
	Automatic Architecture Design Through Neural Architecture Search

	Compressing and Optimising an Existing Architecture
	Lower Precision Weights and Activations Representation
	Removing Weights and Connections

	Positioning
	Conclusion

	Weight Reparametrization for Budget-Aware Network Pruning
	Introduction and Related Work
	Unstructured Magnitude Pruning.
	Weight Reparametrisation
	Pruning with Budget
	Pruning without fine-tuning
	Contributions

	Pruning with Weight Reparametrisation and Budget Loss
	Weight Reparametrisation
	Budget Loss

	Method and Algorithm Overview
	Experiments
	Experimental Setup
	Performances
	Optimal Value of Lambda
	Validation of the Budget Loss
	Validation of the Reparametrisation
	Tuned Initialisation

	Conclusion

	Effective Subnetworks Extraction without Weight Training
	Introduction and Related Work
	Pruning at initialisation
	Lottery Tickets
	Existence of effective subnetworks
	Subnetwork topology extraction

	Contributions
	Extracting Effective Subnetworks withGumbel-Softmax
	Stochastic Weight Sampling
	Smart Weight Rescaling
	Freezing the Topology via Thresholding

	Method Overview and Algorithm
	Experiments
	Experimental Setup
	Performances
	Validation of the Weight Rescaling Mechanism
	Effect of the Learning Rate on Training Performances
	Post Training Pruning Rate Adjustment

	Conclusion

	Conclusion and Perspectives
	Summary of contributions
	Perspectives

	Appendix
	Relationship between Multiply-Accumulate Operations and the Number of Parameters
	Scheduling of the Mixing Coefficient lambda
	Xavier and Kaiming Initialisations

	Bibliography

