)

Siwew: JIP ANetatmo

THESE DE DOCTORAT DE SORBONNE UNIVERSITE
Spécialité - Informatique

Informatique, Télécommunication et Electronique (Paris) - ED130

Deep Neural Network Compression
for Visual Recognition

Compression de Réseaux de Neurones Profonds
pour la Reconnaissance Visuelle

Présentée par

Robin Dupont

Pour obtenir le grade de)
DOCTEUR de SORBONNE UNIVERSITE

Soutenue publiquement le 8 décembre 2023

Devant un jury composé de :

Mme Jenny Benois-Pineau Rapportm'ce
Professeure, Université de Bordeaux

M. Titus Bogdan Zaharia Rapporteur
Professeur, Télécom SudParis

M. Pierre Beauseroy Examinateur
Professeur, Université de Technologie de Troyes

M. Nicolas Gac Ezxaminateur
Professeur, Université Paris-Saclay

M. Vincent Gripon Examinateur
Professeur, IMT Atlantique

Mme Alice Lebois Co-encadrante de these
Ingénieure, Netatmo

M. Hichem Sahbi Directeur de these

Chercheur CNRS (HDR), Sorbonne Université

ii

Abstract

Thanks to the miniaturisation of electronics, embedded devices have be-
come more and more ubiquitous, since the 2010s, realising various tasks
all around us. As their usage is developing, there is a growing demand for
these devices to process data and make complex decisions efficiently. Deep
neural networks are powerful tools to achieve this goal, however, these net-
works are often too heavy and complex to fit on embedded devices. Thus,
there is a compelling need to devise methods to compress these large net-
works without significantly compromising their efficacy. This PhD thesis
introduces two innovative methods, centred around the concept of prun-
ing, aiming to compress neural networks while ensuring minimal impact
on their accuracy.

This PhD thesis first introduces a budget-aware method for compress-
ing large neural networks with weight reparametrisation and budget loss
that does not require fine-tuning. Traditional pruning methods often rely
on post-training saliency indicators to remove weights, disregarding the
targeted pruning rate. Our approach integrates a budget loss, driving the
pruning process towards a specific value during training, thereby achieving
a joint optimisation of topology and weights. By soft-pruning the smallest
weights using weight reparametrisation, our method significantly mitigates
accuracy degradation in comparison to traditional pruning techniques. We
show the effectiveness of our approach across various datasets and archi-
tectures.

This PhD thesis later focuses on the extraction of effective subnet-
works without weight training. Our goal is to identify the best subnetwork
topology in a large network without optimising its weights while still deliv-
ering compelling performance. This is achieved using our novel Arbitrarily
Shifted Log Parametrisation, which serves as a differentiable relaxation of
discrete topology sampling, enabling the training of masks that represent
the probability of selection of the weights. Alongside, a weight rescaling
mechanism (referred to as Smart Rescale) is also introduced, which allows

iii

enhancing the performance of the extracted subnetworks as well as speeding
up their training. Our proposed approach also finds the optimal pruning
rate after one training pass, thereby circumventing computationally ex-
pensive gird-search and training across various pruning rates. As shown
through comprehensive experiments, our method consistently outperforms
closely related state-of-the-art techniques and allows designing lightweight
networks which can reach high sparsity levels without significant loss in
accuracy.

iv

Résumeé

Grace a la miniaturisation de I’électronique, les dispositifs embarqués sont
devenus de plus en plus omniprésents depuis les années 2010, réalisant
diverses taches tout autour de nous. A mesure que leur utilisation se dé-
veloppe, la demande pour des dispositifs traitant les données et prennant
des décisions complexes de maniere efficace augmente. Les réseaux de neu-
rones profonds sont des outils puissants pour atteindre cet objectif, cepen-
dant, ces réseaux sont souvent trop lourds et complexes pour étre intégrés
dans des appareils embarqués. C’est pourquoi il est impératif de conce-
voir des méthodes pour compresser ces grands réseaux de neurones sans
compromettre significativement leur performance. Cette these de doctorat
introduit deux méthodes innovantes, centrées autour du concept d’élagage,
visant a compresser les réseaux de neurones tout en assurant un impact
minimal sur leur précision.

Cette these de doctorat introduit d’abord une méthode prenant en
compte le budget pour compresser de grands réseaux de neurones a l'aide
de reparamétrisation des poids et d’'une fonction de cotit budgétaire, le tout
ne nécessitant pas de fine-tuning. Les méthodes d’élagage traditionnelles
s’appuient souvent sur des indicateurs de saillance post-entrainement pour
supprimer les poids, négligeant le taux d’élagage ciblé. Notre approche
integre une fonction de colit budgétaire, guidant le processus d’élagage
vers une valeur spécifique de parcimonie pendant ’entrainement, réalisant
ainsi une optimisation conjointe de la topologie et des poids. En simu-
lant 1’élaguage des poids les plus petits en cours d’entrainement grace a
la reparamétrisation des poids, notre méthode atténue significativement la
perte de la précision par rapport aux techniques d’élagage traditionnelles.
Nous démontrons l'efficacité de notre approche a travers divers ensembles
de données et architectures.

Cette these de doctorat se concentre ensuite sur I'extraction de sous-
réseaux efficaces, sans entrainement des poids. Notre objectif est d’identifier
la meilleure topologie d'un sous-réseau dans un grand réseau sans en opti-

%

miser les poids tout en offrant des performances convaincantes. Ceci est réa-
lisé grace a notre méthode appelée Arbitrarily Shifted Log-Parametrisation,
qui sert a échantillonner des topologies discrétes de maniere différentiable,
permettant ’entrainement de masques représentant la probabilité de sé-
lection des poids. Parallelement, un mécanisme de recalibrage des poids
(appelé Smart Rescale) est également introduit, permettant d’améliorer
les performances des sous-réseaux extraits ainsi que d’accélérer leur en-
tralnement. Notre approche proposée trouve également le taux d’élagage
optimal apres un unique entrainement, évitant ainsi la recherche exhaustive
d’hyperparametres et un entrainement pour chaque taux d’élagage. Nous
montrons a travers un ensemble expériences que notre méthode surpasse
constamment les techniques de 1’état de l'art étroitement liées et permet
de concevoir des réseaux légers pouvant atteindre des niveaux élevés de
parcimonie sans perte significative de précision.

vi

Contents

Abstract iv
Résumé vi
List of Figures XX
List of Tables XXiv
List of Acronyms XXVi
Remerciements xxViii
1 Introduction 1
1.1 Context 3
1.2 Industrial Context 6
1.3 Why Deep learning 7 6
1.4 Challenges 7
1.5 Contributions 9
1.6 Outline. 11

2 Deep Learning Overview 13
2.1 Introduction 15
2.2 Early Architectures 17
2.2.1 Perceptron 17

2.2.2 Multilayer Perceptron 18

2.3 Neural Network Training 19
2.3.1 Functional Definition 20

2.3.2 Loss Function and Regularisation 20

2.3.3 Loss Optimisation. 23

2.4 Convolutional Neural Networks for Computer Vision . .. 26

24.1 Building Blocks 000 26

CONTENTS

2.4.2 Architectures Evolution 31
2.4.3 Architectures Used in Experiments 34
2.5 Datasets 36
25.1 CIFAR-10 39
2.5.2 CIFAR-100, 39
2.5.3 TinylmageNet 40
2.5.4 Train, Validation and Test Sets 41
Deep Neural Network Compression 43
3.1 Introduction 45
3.2 Accelerating Computation in Neural Networks 47
3.2.1 Fast Fourier Transform 47
3.2.2 Optimised Matrix Multiplication Algorithms 48
3.2.3 Leveraging Matrix Structures 49
3.2.4 Practical Applications and Limitations 51
3.3 Teaching Paradigm o1
3.3.1 Knowledge Distillation o1
3.3.2 Feature-Map Matching 52
3.3.3 Deep Mutual Learning 53
3.3.4 Teacher Assistant 53
3.3.5 Alternative Distillation Losses 54
3.4 Architecture Design 55
3.4.1 Building Blocks for Efficient Architecture Design . 56
3.4.2 Automatic Architecture Design Through Neural Ar-
chitecture Search 61
3.5 Compressing and Optimising an Existing Architecture. . . 65
3.5.1 Lower Precision Weights and Activations Represen-
tation oL 66
3.5.2 Removing Weights and Connections 68
3.6 Positioningo 76
3.7 Conclusion 7

Weight Reparametrization for Budget-Aware Network Prun-

ing

4.1

79
Introduction and Related Work 82
4.1.1 Unstructured Magnitude Pruning. 83
4.1.2 Weight Reparametrisation 85
4.1.3 Pruning with Budget 86

4.1.4 Pruning without fine-tuning 87

viii

CONTENTS

4.1.5 Contributions 90
4.2 Pruning with Weight Reparametrisation and Budget Loss . 91
4.2.1 Weight Reparametrisation 93
4.2.2 Budget Loss L. 97
4.3 Method and Algorithm Overview 99
4.4 Experiments 101
4.4.1 Experimental Setup 101
4.4.2 Performances 102
4.4.3 Optimal Valuveof A\ 103
4.4.4 Validation of the Budget Loss 109
4.4.5 Validation of the Reparametrisation 110
4.4.6 Tuned Initialisation 114
4.5 Conclusion 117

5 Effective Subnetworks Extraction without Weight Training123

5.1 Introduction and Related Work 127
5.1.1 Pruning at initialisation 128
5.1.2 Lottery Tickets 131
5.1.3 Existence of effective subnetworks 133
5.1.4 Subnetwork topology extraction 133

5.2 Contributions L 135

5.3 Extracting Effective Subnetworks with
Gumbel-Softmax L 136
5.3.1 Stochastic Weight Sampling 136
5.3.2 Smart Weight Rescaling 143
5.3.3 Freezing the Topology via Thresholding 145

5.4 Method Overview and Algorithm 146

5.5 Experimentso 148
5.5.1 Experimental Setup 148
5.5.2 Performances 150
5.5.3 Validation of the Weight Rescaling Mechanism . . . 156
5.5.4 Effect of the Learning Rate on Training Performances 157
5.5.5 Post Training Pruning Rate Adjustment 159

5.6 Conclusion 160

6 Conclusion and Perspectives 163

6.1 Summary of contributions 165

6.2 Perspectives L 167

CONTENTS

A Appendix 171
A.1 Relationship between Multiply-Accumulate Operations and

the Number of Parameters 171

A.2 Scheduling of the Mixing Coefficient A\ 172

A.3 Xavier and Kaiming Initialisations. 172

Bibliography 175

List of Figures

1.1

2.1

2.2

2.3

2.4

2.5

Models top-5 accuracy on ImageNet [25] compared to human
performance. L

Conceptual scheme of the perceptron. Each input x; is mul-
tiplied by its associated weight w; and summed to the other
weighted inputs. The bias b is added to the sum and the
result is passed through an activation function ¢ to produce
theoutput

Conceptual scheme of a Multilayer Perceptron (MLP) with
one hidden layer. Each circle represents a neuron and each
line a connection associated with a weight.

[llustration of the effect of the learning rate on the conver-
gence of the gradient descent. The gradient descent has been
applied iteratively for 20 epochs. On the one hand, a too-
high learning rate (n = 1.01) causes the gradient descent to
overshoot the minimum of the loss function. On the other
hand, a too-low learning rate (n = 0.01) causes the gradient
descent to converge slowly.

Conceptual representation of a Convolutional and a Fully
Connected layer. The Convolutional layer (figure 2.4a) takes
a multi-channel input and produces a multi-channel output.
Each coefficient of the output is computed by applying a
convolution operation at a corresponding location in the in-
put. The Fully Connected layer (figure 2.4b) takes a vector
input and produces a vector output. Each connection is
represented by a weight in the weight matrix.

Rectified Linear Unit (ReLU), tanh and sigmoid activation
functions. Best viewed in colours.

xi

18

19

25

28

29

2.6

2.7

2.8

2.9

2.10
2.11

2.12

2.13

2.14

2.15

LIST OF FIGURES

Architecture of LeNet-5, a Convolutional Neural Network
used for handwritten digit recognition. Image taken from

[106] o 32
Architecture of the VGG16 network introduced in [175]. Tm-
age taken from [39]o oL 33

A residual block and its skip connection used in ResNets[67].
The identity skip connection allows for the gradient to be
backpropagated directly through several layers, thus miti-
gating the vanishing gradient problem. 33

Networks size comparison. The z-axis represents the number
of Floating Point Operations (FLOPs) required to process a
single image. The y-axis represents the Top-1 accuracy on
the ImageNet [25] dataset and the size of the circles repre-
sents the number of parameters in the network. Numbers
are taken from [154] 34

VGG16 adapted for CIFAR-10 and CIFAR-100. 35

ResNet20 and ResNet18 architectures. ResNet20 (figure 2.11a)

is tailored for CIFAR-10 and comprises 3 stages encompass-

ing 3 Basic Blocks of 2 Convolutional (Conv) layers each,

with an identity skip connection in each block. ResNet18
(figure 2.11b) is tailored for ImageNet and is composed of 4
stages encompassing 4 Basic Blocks of 2 convolutional layers

each. There are two types of blocks: By with an identity skip
connection and Bp with a projection skip connection. The
projection skip connection is used to match the dimensions
between the input and the output of the block.. 37

Conv2, Conv4 and Conv6 architectures. The number of flat
features F corresponds to the size of the feature map of the
last block B, once vectorised. F = 16384, 8192 and 4096
for Conv2, Conv4 and Conv6, respectively for input images
of size 32 x 32. 38

A sample of images from CIFAR-10. Each row contains
images from one of the 10 classes: plane, car, bird, cat,
deer, dog, frog, horse, ship, and truck 39
A sample of images from CIFAR-100. Each image represents
an instance of one of the 100 distinct classes. 40
A sample of images from the Tiny ImageNet dataset. Each
image represents an instance of one of the 200 distinct classes. 41

xii

LIST OF FIGURES

3.1 Overview of various knowledge distillation frameworks. From
top to bottom, left to right: Deep Mutual Learning [212],
FitNet [165], Attention Transfer [209], Teacher Assistant
[137] and Knowledge Distillation [74]. 53

3.2 Conceptual scheme of [2]. The student network efficiently
learns the main task while retaining high mutual informa-
tion with the teacher network. The mutual information is
maximised by learning to estimate the distribution of the
activations in the teacher network, provoking the transfer of
knowledge. Adapted from the original scheme found in [2]. 54

3.3 Conceptual scheme of the Probabilistic Knowledge Transfer
method. Both the student and the teacher feature maps are
modelled using probability distributions. The divergence of
the latter is minimised in order to transfer knowledge from
the teacher to the student. Illustration taken from [146]. . 55

3.4 Illustration schemes of the standard and depthwise separable
convolution. The standard convolution uses C,,; kernels of
size k x k x C},. The depthwise separable convolution is
split into two steps: (i) a convolution with Cj, kernels of
size k x k and (i7) a convolution with Cyy kernels of size
1 x1x Cy,. Best viewed in colours. 57

3.5 Illustration scheme of the fire module. The fire module is
composed of a squeeze layer (pointwise convolution designed
to reduce the number of channels fed to the following layer)
and an expand layer (convolution with mixed 1 x 1 and 3 x 3
kernels. The 1 x 1 kernels replace some of the 3 x 3 kernels,
being less computationally intensive.). Best viewed in colours. 58

3.6 Illustration scheme of grouped convolution with channel shuf-
fling. Each filter only acts on a subset of the input tensor
(here represented by a matching colour). The channels of the
yielded tensor are shuffled to ensure the subsequent groups
can access information from all the previous groups. Best
viewed in colours. 59

3.7 Illustration scheme of the path taken by the feature maps
after the channel split block. Adapted from the original
scheme found in [131].o 59

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

LIST OF FIGURES

[llustration scheme of the residual block and the inverted
residual block. Note that on the inverted residual block, the
feature maps with the lower number of channels are the ones
connected via the skip connection, whereas it is the opposite
on the standard residual block. Diagonally hatched layers
do not use non-linearities. The grey colour indicates the
beginning of the next block. Both illustrations are taken
from [29]. Best viewed in colours.

[llustration scheme of the Squeeze-and-Excitation module.
The original feature map is squeezed into a channel descrip-
tor through global average pooling. This descriptor is then
used to learn the interdependencies between the channels
through two fully connected layers. The output is then mul-
tiplied layerwise with the original feature map (ezcitation).
Best viewed in colours.

Figure 2.9 updated with the size and performance of the
efficient architectures detailed in section 3.4.1. Best viewed
in colours.

ImageNet top-1 accuracy vs model size (in millions of pa-
rameters). The EfficientNet family of models significantly
outperforms other models of similar size, obtained either by
Neural Architecture Search (NAS) or manual design. This
graph is taken from [184].

Figure 3.10 updated with the size and performance of archi-
tectures detailed in section 3.4.2. Best viewed in colours.

Example of binarised kernels and activations in a convolu-
tional layer. The kernels are taken from the first layer of a
Convolutional Neural Network (CNN) trained on CIFAR-10.
Image taken from [87].

Fake quantisation nodes (fake quant.) are included in the
computation graph of figure 3.14b, whereas figure 3.14a rep-
resent the computaion graph used during inference. During
the inference, weights are stored in uint8 format, whereas
the bias are not, because their computational overhead is
negligible.[91]. Both illustrations are adapted from [91]. . .

Conceptual illustrations of structured and unstructured prun-

60

61

62

64

65

67

70

LIST OF FIGURES

3.16

3.17

4.1

4.2

4.3

4.4

4.5

[lustration Scheme of ThiNet. The dotter filters and cor-
responding channels are the ones to be pruned. Once they
are removed, the pruned network is fine-tuned. Image taken

from [130]

Comparison of the method described in [96] (right) and stan-
dard channel pruning (left). The differentiable mask allows
for a soft pruning that can be reverted during the training.
Image taken from [96]

Comparison of our method and magnitude pruning. Magni-
tude pruning does not include any prior on weights during
the initial training phase and needs an additional fine-tuning
procedure. Our method embeds a saliency measure based
on the weight magnitude in the reparametrisation and does
not require fine-tuning. Best viewed in colour.

Reparametrisation function h; with varying temperature pa-
rameter t and power n. t controls the width of the pit, and
n controls the steepness of the slope.

The unstable reparametrisation function h; and its stable
alternative h;, with ¢ = 1 and n = 4 for both functions.

Log-scale plot of number of parameters and normalisation
factor per layer for a VGG16 network. The significant dif-
ferences in terms of the number of parameters yields dra-
matically different normalisation factors. Some of them are
4 orders of magnitude apart, and all of them are vanishingly
small compared to a common main task loss value.

Principle scheme of our pruning pipeline and the standard
pruning pipeline. With our pruning pipeline, the targeted
pruning rate that will be enforced during the effective prun-
ing step, is taken into account from the beginning. Thus,
our method does not need a fine-tuning step. In contrary,
the standard pruning pipeline applies the pruning criterion
and the effective pruning after the initial training. This re-
sults in a drop in performance that needs to be compensated
for with fine-tuning. L.

71

72

92

95

97

99

4.6

4.7

4.8

4.9

4.10

LIST OF FIGURES

Performances comparison of our method (Ours) against mag-
nitude pruning without (MP w/o FT) and with fine-tuning

(MP w/ FT)with a Conv4 network on CIFAR-10 and CIFAR-

100 datasets, for different pruning rates. Figure 4.6a and
figure 4.6b show the testing accuracy of the model and fig-

ure 4.6¢c and figure 4.6d the number of epochs needed to
obtain the best model. Best viewed in colours. 104

Performances comparison of our method (Ours) against mag-
nitude pruning with fine-tuning (MP+FT) with a VGG16
network on CIFAR-10 and CIFAR-100 datasets, for different
pruning rates. Figure 4.7a and figure 4.7b show the testing
accuracy of the model and figure 4.7c¢ and figure 4.7d the
number of epochs needed to obtain the best model. Best
viewed in colours. 105

Performances comparison of our method (Ours) against mag-
nitude pruning with fine-tuning (MP+FT) with a ResNet20
network on CIFAR-10 and CIFAR-100 datasets, for different
pruning rates. Figure 4.8a and figure 4.8b show the testing
accuracy of the model and figure 4.8c and figure 4.8d the
number of epochs needed to obtain the best model. Best
viewed in colours. 106

Performances comparison of our method (Ours) against mag-
nitude pruning with fine-tuning (MP+FT) with a ResNet18
network on TinylmageNet dataset, for different pruning rates.106

Impact of the parameter A on the achieved final budget for
a Conv4 network on CIFAR-10 dataset, for various pruning
rates. A too-small value of A\ does not make the actual bud-
get match the desired budget. The actual budget is either
too small (figure 4.10a) or too high (figure 4.10c) compared
to the target, depending on the applied pruning rate. . . . 108

xXvi

LIST OF FIGURES

4.11

4.12

4.13

4.14

Comparison of our method and its variant without the bud-
get loss. The experimental results are referred to as ¢ reg.,
wherein the budget loss is replaced by a ¢ regularisation
loss on the network weights. The mixing coefficient A\ is
varied from 0.1 to 100, depending on the experiment. w/o
budget corresponds to the absence of the budget loss (this
is equivalent to A = 0). On the other hand, w/ budget cor-
responds to our method, with the same setup as described
in section 4.4.2. Results are presented for a Conv4 net-
work, trained on CIFAR-10 (figure 4.11a) and CIFAR-100
(figure 4.11b). Best viewed in colours.

Comparison of our method and its variant without the bud-
get loss. The experimental results are referred to as ¢ reg.,
wherein the budget loss is replaced by a ¢ regularisation
loss on the network weights. The mixing coefficient A\ is
varied from 0.1 to 100, depending on the experiment. w/o
budget corresponds to the absence of the budget loss (this
is equivalent to A = 0). On the other hand, w/ budget cor-
responds to our method, with the same setup as described
in section 4.4.2. Results are presented for a ResNet20 net-
work, trained on CIFAR-10 (figure 4.12a) and CIFAR-100
(figure 4.12b). Best viewed in colours.

Comparison of our method and its variant without the bud-
get loss. The experimental results are referred to as ¢; reg.,
wherein the budget loss is replaced by a ¢ regularisation
loss on the network weights. The mixing coefficient A is
varied from 0.1 to 100, depending on the experiment. w/o
budget corresponds to the absence of the budget loss (this
is equivalent to A = 0). On the other hand, w/ budget cor-
responds to our method, with the same setup as described
in section 4.4.2. Results are presented for a VGG16 net-
work, trained on CIFAR-10 (figure 4.13a) and CIFAR-100
(figure 4.13b). Best viewed in colours.

Comparison of our method and its variant without the re-

111

111

112

parametrization on Conv4, evaluated on CIFAR-10 and CIFAR-

100. Our method (budget + reparam) has similar perfor-
mance to the budget only variant before pruning, whereas
our method, is already pruned. Once pruned, the budget
only variant is significantly impaired.

xvii

114

LIST OF FIGURES

4.15 Comparison of our method and its variant without the re-
parametrization on ResNet20, evaluated on CIFAR-10 and
CIFAR-100. Due to the small size of the network (see ta-
ble 2.1), the pruned version of our method (budget + reparam)
and the budget only variant cannot keep up with the un-
pruned version. Nevertheless, if considering the pruned ver-
sions, our method scores better, thanks to the addition of
the reparametrization. 115

4.16 Comparison of our method and its variant without the reparametriza-
tionn VGG16, evaluated on CIFAR-10 and CIFAR-100. Our
method (budget + reparam) has similar performance to the
budget only variant before pruning, whereas our method, is
already pruned. Once pruned, the budget only variant is
significantly impaired. L. 115

4.17 Fine-tuning of a Conv4 network pruned by magnitude prun-
ing (MP w/o FT) on the CIFAR-10 and CIFAR-100 datasets
for various pruning rates. Conventional (MP w/ FT) fine-
tuning is compared to fine-tuning with our method (pruned+FT
(w/ our method)). Our method, described in section 4.3, is
shown for comparison purposes (Ours). On this network,
our method performs better than other approaches. Fine-
tuning the network with our method provides better results
than fine-tuning it with a conventional method. 117

4.18 Fine-tuning of a ResNet20 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets with various pruning rates. Conventional (MP w/

FT) fine-tuning is compared to fine-tuning with our method
(pruned+FT (w/ our method)). Our method, described in
section 4.3, is shown for comparison purposes (Ours). On
this network, fine-tuning with our method considerably out-
performs other approaches. 118

LIST OF FIGURES

4.19

4.20

0.1

5.2

5.3

5.4

5.5

5.6

Fine-tuning of a ResNet20 network pruned by magnitude
pruning (MP w/o FT) on the CIFAR-10 and CIFAR-100
datasets with various pruning rates. Conventional (MP w/
FT) fine-tuning is compared to fine-tuning with our method
(pruned+FT (w/ our method)). Our method, described in
section 4.3, is shown for comparison purposes (Ours). On
this network, fine-tuning with our method performs on par
with other methods up to 95% of pruning. For higher prun-
ing rates, it outperforms other approaches. 118

Comparison of fine-tuning a network whose initialisation has
been trained from scratch (denoted unpruned initialisation)
or trained from scratch and pruned with magnitude prun-
ing (denoted pruned initialisation). Fine-tuning a pruned
initialisation always outperforms fine-tuning an unpruned
initialisation in the tested configurations. 119

Comparison of a standard train-prune-finetune pipeline and
the prune at initialisation pipeline. In the latter, the net-
work is pruned before training. 128

Synflow accuracy compared to SNIP and GraSP for different
pruning rates. Methods are benchmarked on VGG16 trained
on CIFAR-100. Illustration taken from [186] 130

Conceptual illustration of the different processes to obtain
a Lottery Ticket: reinitialising the weights to their original
values with one-shot magnitude pruning (LT with original
values), reinitialising the weights to their early stage val-
ues with one-shot magnitude pruning (LT with early stage
values) and iterative magnitude pruning (LT with iterative
magnitude pruning). Best viewed in colour. 132

Overview of our pruning pipeline and standard pruning pipelines.
Our pipeline performs topology selection only: weights are

not trained. On the contrary, standard pruning pipelines

rely on weight training and fine-tuning. 147

Data Augmentation pipeline example used for CIFAR-10
and CIFAR-100. 149

Impact of Smart Rescale (SR) on the number of epochs re-
quired to reach convergence for Conv{2,4,6} on CIFAR-10
and CIFAR-100. 157

5.7 Evolution of the test accuracy for Conv4, VGG16 and ResNet-

5.8

Al

LIST OF FIGURES

20 trained with Arbitrarily Shifted Log Parametrisation (ASLP)

(with data augmentation, Weight Rescaling (WR) and Signed
Constant (SC)) on CIFAR-10 for various learning rates. A
learning rate of 50 yields the optimal balance between per-
formance and training speed.
Comparative analysis of Arbitrarily Shifted Log Parametri-
sation (ASLP) performance for CIFAR-10 and CIFAR-100
datasets using various network architectures (Conv{2,4,6},
ResNet-20, and VGG16) at different pruning rates. Arbi-
trarily Shifted Log Parametrisation (ASLP) performances
are evaluated with Weight Rescaling (WR), Signed Constant
(SC) and data augmentation. Results demonstrate that
Conv{2,4,6} networks maintain strong performance even at
higher pruning rates and indicate that the pruning rate
achieved by thresholding is equivalent to the pruning rate
yielding the best test accuracy when sweeping through the
possible pruning rates.

Evolution of the mixing coefficient A for different values of
p and for increasing and decreasing scheduling. Best viewed
incolor.

XX

159

161

List of Tables

2.1

2.2

4.1

4.2

Number of parameters for the used neural network architec-
tures. The number of parameters is given for the CIFAR-10
dataset, except for the ResNet18 architecture, whose num-
ber of parameters is given for the TinyImageNet dataset. .

The number of images, of classes, image size and size of the
test set for the three datasets used: CIFAR-10, CIFAR-100
and TinylmageNet.

Impact of the parameter A on the achieved budget and the
post-pruning test accuracy of the model for a Conv4 net-
work on the CIFAR-10 dataset for various pruning rates.
Although a high value of A ensures the targeted budget is
reached, it also leads to a lower test accuracy when the prun-
ing rate increases.o

Achieved budget for the budget only variant. Results are
presented for A = 5. Across all experiments, the achieved
budget matches closely the targeted budget, which is com-

puted as (1—pruning rate)x 100 and is expressed in percent.

Xxi

35

38

107

113

5.1

5.2

LIST OF TABLES

Comparison of the number of explored topologies for the
Conv4 and ResNet-18 networks with CIFAR-10 and Tiny-
ImageNet, respectively. Since a new topology is sampled
for every batch, the number of explored topologies (F) is
computed as the product of the number of batches and the
number of epochs during which the network is trained (here
10%). The number of possible topologies (P) is computed
as the number of possible weight combinations in the net-
work (2V). The fraction of explored topologies is computed
as the ratio of the fraction of explored topologies for the
Conv4 network and the fraction of explored topologies for
the ResNet-18 network. In these experimental setups, the
fraction of explored topologies for the Conv4 network is sig-
nificantly higher than the fraction of explored topologies for
the ResNet-18 network.

Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)

test accuracy against Edge-Popup and Supermask [157,
215] on CIFAR-10 using various configurations. We reim-
plemented the configurations tested by the authors in their
articles. Performances are presented with (table 5.2a) and
without (table 5.2b) data augmentation, Weight Rescaling
(WR), and Signed Constant (SC) weight distribution. A
dash denotes a configuration that was not tested by the au-
thors. Our method performances are reported for both the
thresholding and averaging setups detailed in section 5.3.3.
For Edge-popup, we use the value of £ which yeilds the best
test accuracy for Conv{2,4,6}, as reported in [157]. Across
all setups, our method ASLP outperforms Edge-Popup and
Supermask.

LIST OF TABLES

5.3 Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)

5.4

9.5

test accuracy against Edge-Popup and Supermask [157,
215] on CIFAR-100 using various configurations. We use
the configurations tested by the authors in their articles.
Performances are presented with (table 5.2a) and without
(table 5.2b) data augmentation, Weight Rescaling (WR),
and Signed Constant (SC) weight distribution. A dash de-
notes a configuration that was not tested by the authors.
Our method performances are reported for both the thresh-
olding and averaging setups detailed in section 5.3.3. For
Edge-popup, we use the value of k£ which yeilds the best
test accuracy for Conv{2,4,6}, as reported in [157]. For
smaller networks, ASLP outperforms the other methods,
with the exception of the Signed Constant (SC) setup for
Conv2 and Conv4. However, for Conv6, Arbitrarily Shifted
Log Parametrisation (ASLP) performance is superior when
data augmentation is disabled, while Edge-popup achieves

better results with data augmentation enabled (except for
the Weight Rescaling (WR) setup).

154

Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)

test accuracy against Edge-Popup and Supermask [157,
215] on both CIFAR-10 and CIFAR-100 datasets using
VGG16 and ResNet-20 architectures. The results show-
case the scenario with data augmentation, Weight Rescal-
ing (WR) and Signed Constant (SC) weight distribution.
Across all datasets and network architectures, Arbitrarily
Shifted Log Parametrisation (ASLP) surpasses the compar-
ative methods in its thresholding configuration, detailed in
section H.3.3.o

Comparison of Arbitrarily Shifted Log Parametrisation (ASLP)

test accuracy against Edge-Popup and Supermask [157,
215] on TinyImageNet datasets using ResNet-18 architec-
ture. The results showcase the scenario with data augmen-
tation, Weight Rescaling (WR) and Signed Constant (SC)
weight distribution. The thresholding and averaging con-
figurations are detailed in section 5.3.3. Edge-popup [157]
performs the best in this scenario.

xxiii

5.6

Al

LIST OF TABLES

Comparison of observed pruning rates of the Arbitrarily
Shifted Log Parametrisation (ASLP) method across vari-
ous neural network architectures and datasets (CIFAR-10
and CIFAR-100) after applying the thresholding procedure,
detailed in section 5.3.3. The results are presented as mean
percentages of pruned weights with their respective standard
deviations, for the setup with data augmentation, Weight
Rescaling (WR) and Signed Constant (SC) weight distribu-
tlon. . . .o

Conv4 test accuracy on CIFAR-10, with A = 50, for increas-
ing (incr.) and decreasing (decr.) scheduling for various
pruning rates and values of the parameter p. The networks
have been trained for 300 epochs.

XXiv

156

Acronyms

NaN Not a Number

AT Artificial Intelligence

ANN Artificial Neural Network

ASLP Arbitrarily Shifted Log Parametrisation
BN Batch Normalisation

CNN Convolutional Neural Network
Conv Convolutional

DNN Deep Neural Network

DWR Dynamic Weight Rescaling

FC Fully Connected

FFT Fast Fourier Transform

FLOP Floating Point Operation

FP32 single-precision floating-point format
FPGA Field Programmable Gate Array
GPU Graphics Processing Unit

GS Gumbel-Softmax

IoT Internet of Things

KD Knowledge Distillation

LT Lottery Ticket

XXV

LTH Lottery Ticket Hypothesis
MAC Multiply-Accumulate
MLP Multilayer Perceptron
NAS Neural Architecture Search
OBS Optimal Brain Surgeon
ReLU Rectified Linear Unit

SC Signed Constant

SGD Stochastic Gradient Descent
SKD Scaled Kaiming distribution
SR Smart Rescale

STE Straight Through Estimator
STGS Straight Through Gumbel-Softmax
TA Teacher Assistant

WR Weight Rescaling

XXVi

LIST OF TABLES

Remerciements

La these est un défi aussi bien scientifique qu’humain et qui ne peut étre
relevé sans 'aide de nombreuses personnes qui m’ont apporté leur temps,
leurs idées, leurs conseils et leur soutien. Je souhaite ici les remercier.

Je tiens tout d’abord a remercier mon directeur de these Hichem
Sahbi pour son encadrement durant ces quelques années.

Je souhaite remercier Jenny Benois-Pineau et Titus Bogdan Za-
haria pour avoir accepté d’étre rapporteurs de cette theése et pour le temps
consacré a ce manuscrit. Mes remerciements s’étendent également a Pierre
Beauseroy, Nicolas Gac et Vincent Gripon pour leur participation en
tant que membres du jury.

Cette these est une these CIFRE, menée en partenariat avec Netatmo
ol j’ai pu rencontrer et travailler avec de brillants collegues. Je remercie
tout particulierement Alice Lebois, Mohammed-Amine Alaoui mais
aussi Guillaume Michel et Mehdi Felhi qui ont été de grands soutiens
et m’ont aidé a progresser tout au long de cette these. Je veux également
remercier Chadi Gabriel, Steeve Vu, Fabien Freling et Yacine Me-
zaguer et toutes les autres personnes que j’ai pu cotoyer chez Netatmo
pour les discussions enrichissantes, leur soutien, leurs coups de main et les
bons moments que nous avons pu passer ensemble.

Je remercie 1’école doctorale et en particulier son directeur Habib
Mehrez pour sa bienveillance, son soutien et son aide précieuse.

Je remercie mes proches dont l'intensité et l'exigence de ces quelques
années m’ont un peu éloigné, a mon grand regret. Je remercie mes amis
qui m’ont accompagné et soutenu. Je pense a Hugo, Pierre, Antoine,
Nicolas, Arnaud, Paul-Octave, le groupe des Lamas et ses nombreux

XxXvii

LIST OF TABLES

docteurs, le groupe des Cryptogourmets, Arthur, Brian et en particu-
lier Léo pour m’avoir inspiré a entreprendre, moi aussi, I’aventure qu’a été
cette these.

Je remercie tres chaleureusement Odile pour son aide inestimable et
ses précieux conseils qui m’ont aidé a avancer et ne pas baisser les bras.

Je remercie mes parents Denis et Véronique ainsi que ma sceur Pau-
line. Ils m’ont toujours soutenu dans tous les défis que je m’étais lancé et
j'espere que je les aurai rendus fiers d’étre arrivé au bout de celui-ci.

Enfin, je remercie Alice, qui, en plus d’étre ma moitié, a été ma béquille
pendant ces quelques années. Elle m’a écouté, soutenu, accompagné et en-
couragé, parfois au mépris de ses propres ambitions et projets. Elle a été
mon moteur, tant et si bien que tout ceci n’aurait pas été possible sans elle.

A toutes celles et a tous ceux que j’ai cités, mais aussi a celles et ceux
que j’ai oubliés, merci.

xxviii

Chapter 1

Introduction

Contents

1.1 Context 3
1.2 Industrial Context 6
1.3 Why Deep learning 7 L. 6
1.4 Challenges 7
1.5 Contributions 9
1.6 Outline. 11

1.1 Context

From the spinning jenny, blast furnace and steam engine that sparked the
first industrial revolution to the Internet of Things (IoT) devices that drives
the fourth, the objective of mechanising labour and optimising productiv-
ity has been a persistent theme throughout the past centuries. The first
industrial revolution, which dates back to 1760, introduced mechanisation
through the use of water wheels and steam engines. The second industrial
revolution, starting towards the end of the XIXth century, is linked to
the development of automobiles, crude oil extraction and assembly lines
powered by electric energy. The third industrial revolution, also called the
digital revolution, took place in the second half of the XXth century and
brought electronics, information and communication technology, and auto-
mated production. The Fourth Industrial Revolution, often known as In-
dustry 4.0, inaugurates the digital integration of production chains as well
as smart and connected devices that lead to more efficient manufacturing
systems. The fourth industrial revolution focuses on the interconnectivity
of devices and the development of their computational capabilities. This
track leads to the emergence of ever-connected [o'T devices with embedded
computing facilities, such as smartphones, autonomous vehicles or satel-
lites, that leverage Artificial Intelligence (AI) algorithms.

1.1. CONTEXT

In parallel with these industrial revolutions, the field of Al has seen
substantial growth and development. The term Artificial Intelligence was
first used at the Dartmouth workshop in 1956 which is considered to be the
founding event of Al as a research field [133]. It launched decades of re-
search into machine learning and natural language processing among others
[142]. In the subsequent decades, Al saw significant strides, including the
development of rule-based systems, called expert systems [49], in the 1970s
and the early exploration of machine learning in the 1980s [169]. These
advancements occurred alongside the third industrial revolution, setting
the stage for further progress in Al. In the late XXth and early XXIst cen-
turies, coinciding with the premises of the fourth industrial revolution and
helped with substantial progress in computational power of Graphics Pro-
cessing Units (GPUs), Al started to draw tremendous attention from both
researchers and industrials with the advent of Deep Learning. The latter
is a subfield of machine learning which uses multi-layer Artificial Neural
Network (ANN) to learn and model complex patterns in datasets in an end-
to-end fashion, bringing significant improvement over manually engineered
data representation. The fast development of Deep learning has been driv-
ing advancements in various domains such as natural language processing
[12, 27, 193], image and speech recognition [102, 175, 67, 61, 13, 4], text and
image generation [53, 98, 12|, video game playing [173, 174] and molecule
folding [95] to name a few.

The conquest of new fields and the quest for performance improvement
of Deep Learning models have led to a significant increase in their compu-
tational complexity and size (see figure 3.12), particularly regarding their
number of parameters. The sheer size of modern ANNs, called Deep Neu-
ral Networks (DNNs), presents a significant barrier to their deployment
on embedded devices or loT devices whose memory and computational
resources are inherently limited. To circumnavigate this hurdle, the preva-
lent approach is to offload computations onto remote servers, leveraging
the ever-interconnected nature of modern [oT devices and appliances.

Nonetheless, several compelling reasons exist for conducting embedded
computations instead of moving them to the cloud. First, processing the
data locally on premises ensures better data privacy, since the latter does
not need to leave the device to be processed on the cloud. Indeed cloud
instances can be located on various continents or countries where the legis-
lation about data privacy might be different from the one of the countries

4

CONTENTS

where the data is collected. Second, local computations can distribute the
processing and limit communications. This is particularly relevant in more
ways than one: first, it can reduce the cost of communication and band-
width, which are typically billed to companies by cloud providers. Second,
in some scenarios, the device might not have access to a large bandwidth
or cannot afford to transmit a lot of data, which can be the case for remote
areas or some devices with a low power budget. Third, local computations
can lead to greater responsiveness by reducing latency, which might be
critical in some applications such as autonomous vehicles. Fourth, local
computations can enable autonomy, which is particularly relevant for de-
vices that cannot rely on internet access, such as Mars rovers, submarine
drones or any other devices that need to process data in radio silence.

The fourth industrial revolution and the rapid evolution in the field of
AT have opened up a myriad of applications, with Al algorithms and in
particular DNNs, offering significant potential to enhance the capabilities
of IoT devices. However, the deployment of these advanced DNNs on [oT
devices presents a significant challenge due to the inherent computational
and memory constraints of such devices. The sheer size and complexity
of modern DNNs, which have been instrumental in their success, become
a barrier when considering on-device deployment. This presents a com-
pelling case for the development of lightweight neural networks, tailored
for IoT devices, that maintain the power of their larger counterparts while
being significantly reduced in size and computational requirements. Such
lightweight neural networks can also benefit all areas where saving compu-
tational resources is of interest. Consequently, there is a need for dedicated
research efforts to design methods that yield lightweight neural networks.
This thesis aims to contribute to this effort by introducing pruning methods
that can reduce the size of neural networks while preserving their perfor-
mances, with a focus on topology selection. We introduce two new pruning
methods: The first performs joint topology and weight optimisation allow-
ing for a minimal loss in performance after pruning compared to standard
methods. The second approach does not require any weight training and
instead focuses on stochastic yet differentiable topology selection, achieving
compelling results overall and outperforming other related state-of-the-art
methods that, again, do not train the weights.

5

1.2. INDUSTRIAL CONTEXT

1.2 Industrial Context

This research work is a CIFRE thesis with Netatmo, a French company
specialising in smart devices that is now part of the Legrand Group. No-
tably, Netatmo commercialises security cameras for individual use that
perform tasks such as face recognition and object detection using DNNs.
The objective is to run the DNNs directly on these cameras, sidestepping
the need to send data to distant servers. This approach aligns well with
the reasons outlined in the previous section, particularly in ensuring data
privacy. Moreover, it allows for a subscription-free business benefiting the
end user, since there is no need to pay for cloud infrastructures dedicated
to running DNNs. Therefore, Netatmo needs to develop lightweight neu-
ral networks that can be run on embedded devices while maintaining the
performance of their larger and more complex counterparts. The models
should be lightweight in order to, on the one hand, run on limited hardware,
and on the other hand, be fast enough to perform, for instance, real-time
intruder detection and alerting.

1.3 Why Deep learning ?

Deep learning is a subfield of machine learning that is the subject of in-
tense research efforts and numerous publications. It employs Artificial
Neural Networks, called Deep Neural Networks (DNNs), that aim to learn
and model complex patterns in unstructured data in an end-to-end fash-
ion. Deep learning models have proven their effectiveness in numerous
domains and have been particularly performant in the field of computer
vision [67, 160, 121]. Computer vision, which lies at the heart of Netatmo
smart camera functionalities, encompasses algorithms that enable comput-
ers to interpret and understand the visual world and in particular detect
and classify objects.

DNNs are the backbone of most advanced computer vision applica-
tions, including Netatmo facial recognition and object detection features.
More specifically, Convolutional Neural Networks (CNNs), a specific type
of DNNs can process images directly, reducing the need for manual feature
extraction, and their capacity for hierarchical feature learning makes them
particularly effective for tasks such as object recognition and classification.
Their architecture is such that they perform well at recognising patterns

6

CONTENTS

in unstructured data and are able to learn gradually more complex and
abstract concept representations from raw data, enabling them to outper-
form other machine learning models and humans in computer vision tasks
(see figure 1.1).

14
S
—
512
»
I910
Y
a 8
L
@ 6
pd
)
4
=
2
0 — —_ —_ —_ —~ —~ fon) - (2]
~N ™ < < 0 N~ ©) c
~ ~ ~ ~ ~ ~ ~ ~ m
o o o o o o o o E
o) o o o o Q o S
© © O] ko) = = © @ T
s £ ¢ 35 T T & %
o N | © b < S
< 2 Z o pd ©
7] =z 9
Q Q 7] =
(O] Y &: L
Models

Figure 1.1: Models top-5 accuracy on ImageNet [25] compared to human per-
formance.

Given the nature of tasks the Netatmo cameras are designed to per-
form, deep learning and Deep Neural Networks are not just a choice but a
necessity. They represent the state of the art in computer vision tasks that
outperforms other algorithms and allows for accurate and reliable object
detection and recognition.

1.4 Challenges

While deep learning, particularly through the use of CNNs, is the technol-
ogy of choice for computer vision applications, it comes with its challenges
that need to be addressed, especially in the context of deploying these deep
and large models on embedded devices. These challenges include model
complexity and computational requirements. The necessity of compressing
neural networks has been highlighted previously and also comes with its

7

1.4. CHALLENGES

challenges that include: preserving the performance and controlling the
size of the compressed model as well as training time.

One of the most significant challenges in deploying deep learning models
and especially CNNs on embedded devices is the large model size. These
models often have millions of parameters and this makes them computa-
tionally heavy and challenging to fit into the limited memory of embedded
devices. Secondly, these complex models require substantial computational
resources to operate. This translates into slow computations which is a crit-
ical issue for devices which aim to perform real-time tasks.

Compressing large neural networks is a necessity to deploy them on
embedded devices. However, it comes with its challenges. First, the
compressed model should maintain the performance of the original model.
However, the original large model is trained with all its parameters and
thus depends on all of them. Consequently, removing more than a few can
lead to degraded performance.

Second, the compressed model should be small enough to fit into the
limited memory of embedded devices. It means that the process should be
controlled to ensure that the size of the resulting model does not exceed
the memory budget. However, compressing the model too much can lead
to an irrecoverable loss in performance. The compression procedure and
hyperparameters should be carefully chosen to ensure that the produced
model has enough capacity to perform the task at hand. This is often
achieved by grid-searching the optimal set of hyperparameters, which can
be time-consuming.

Third, the compression process should be fast enough to be practical.
Indeed, this process is often performed after the training of the original
model and often requires fine-tuning the compressed one to compensate
for the loss of performance. This fine-tuning step can be computationally
expensive and time-consuming, effectively doubling the training time of
the model in some scenarios.

To conclude, while deep learning and CNNs represent an exciting ad-
vancement in computer vision applications, several challenges need to be
addressed for efficient and effective deployment on embedded devices. Ad-
dressing these challenges forms the crux of this research, with a particular

8

CONTENTS

focus on model compression techniques to reduce the size and complexity
of neural networks without significant loss in performance.

1.5 Contributions

This thesis tackles the challenge of compressing DNNs through pruning,
a technique that aims to reduce the size of a neural network by removing
redundant or unnecessary parameters, subsequently detailed in chapter 3.
The contributions detailed in this manuscript focus on methods to identify
the parameters to prune as well as minimise the impact of their removal
on the final performance. These contributions are as follows:

Budget-aware pruning with weight reparametrisation. The two
main challenges when pruning a neural network are first, determining which
weights should be removed and then, mitigating the loss of performance
introduced by weight removal. The first challenge is often referred to as
determining the saliency of the weights, which is a score that reflects the
importance of the weights in the network. The second challenge is often
sidestepped and the pruned network is simply fine-tuned to recover the lost
performance. To address both of these challenges, we propose the following
main contributions:

o A numerically stable reparametrisation function, used in both our
weight reparametrisation and our budget regularisation loss (subse-
quently detailed), that acts as a surrogate differentiable ¢, norm.

o A weight reparametrisation that embeds the saliency score of the weight
in its expression and therefore value. This reparametrisation allows to
soft-prune the weights during training thereby significantly mitigating
the performance drop that occurs after pruning. Moreover, this repara-
metrisation does not require the introduction of auxiliary variables to
determine the saliency of the weights, leading to a minimal impact on
memory and computational requirements.

o A budget regularisation loss that allows to drive the optimisation pro-
cedure to respect a given budget. This budget regularisation loss ben-
efits directly from the aforementioned reparametrisation function to
compute the current weight budget. It is optimised jointly with the

9

1.5. CONTRIBUTIONS

original loss, leading to an optimal solution in terms of performance
and budget.

o A comprehensive set of experiments that demonstrate the effectiveness
of our method and validate each one of its components on various data-
sets and architectures.

These contributions have been published in the following article:

« Robin Dupont, Hichem Sahbi, and Guillaume Michel. Weight repara-
metrization for budget-aware network pruning. In 2021 IEEE Inter-

national Conference on Image Processing, ICIP 2021, Anchorage, AK,
USA, September 19-22, 2021, pages 789-793. IEEE, 2021.

Pruning without weight training with stochastic sampling. As
mentioned above, a major hurdle in pruning is determining which weights
to remove. This is especially challenging since weights, and consequently
their saliency, can fluctuate throughout training. This implies that prun-
ing should either be reversible or performed at the end of training. We
propose a different approach that does not require training the network
to determine the saliency of the weights, the latter being fixed throughout
the process. Instead, we sample a subset of weights (effectively pruning
the other weights) forming a subnetwork of the original network and eval-
uate its performance. This allows us to search for a topology that is both
lightweight and performant inside the original network without training its
weights. The main contributions of this method are as follows:

o A stochastic weight sampling method that is computationally effi-
cient, numerically stable, differentiable and allows sampling weights
while training their probability of being selected, represented by la-
tent masks. The optimisation of the latter allows to learn the saliency
of the weights without training the network, and therefore identifying
and extracting an effective subnetwork.

o A pruning strategy for the masks that freeze the topology and performs
better than averaging methods previously used in the state-of-the-art.
Moreover, this pruning strategy allows to discover the optimal pruning
rate for the network, eliminating the need for costly grid search to
determine it.

10

CONTENTS

o An efficient learnt-based weight rescaling mechanism to compensate
for the disruption in weight distribution caused by stochastic sampling.
This rescaling is less computationally intensive, more flexible and al-
lows for smoother variations of the scaling factor than other rescaling
methods.

e A comprehensive set of experiments that demonstrate the effectiveness
of our method and validates each one of its components on various
datasets and architectures, as well as comparison with other closely
related state-of-the-art methods in various configurations.

o A public repository containing the implementation of our method and
the methods we compare against, as well as detailed code and instruc-
tions to reproduce our results.

These contributions have been published in the following article:

e Robin Dupont, Mohammed Amine Alaoui, Hichem Sahbi, and Alice
Lebois. Extracting effective subnetworks with Gumbel-Softmax. In
2022 IEEE International Conference on Image Processing, ICIP 2022,
Bordeauz, France, 16-19 October 2022, pages 931-935. IEEE, 2022,

1.6 Outline

The rest of this thesis is organised as follows:

Chapter 2 offers an introduction to deep learning, providing a detailed
overview of its foundational and core concepts. It first explores early ar-
chitectures, beginning with the Perceptron and the Multilayer Perceptron
(MLP). The focus of the chapter then shifts towards neural network train-
ing, giving formal definitions of the loss function, regularisation, and op-
timisation process. A dedicated section delves into Convolutional Neural
Networks, exposing and detailing their building blocks, and the evolution
of their architectures. Then, the architectures used in the experiments of
chapters 4 and 5 are detailed. Additionally, this chapter lists and describes
prominent datasets, namely CIFAR-10, CIFAR-100, and TinylmageNet,
and discusses their respective train, validation, and test sets.

11

1.6. OUTLINE

Chapter 3 introduces deep neural network compression and presents
state-of-the-art methods divided into different families. The chapter be-
gins with acceleration techniques and presents a range of methods whose
goal is to speed up matrix operations or convolutions. Then, it explores the
teaching paradigm, highlighting methods that rely on a large pre-trained
network to improve the training of lightweight ones. Furthermore, the
chapter addresses the design aspects of lightweight architectures introduc-
ing building blocks for efficient architecture design and Neural Architecture
Search. Afterwards, the chapter discusses methods to compress and opti-
mise existing architectures and in particular pruning. Finally, the chapter
presents the positioning of our methods and the rationale behind them.

Chapter 4 presents our pruning method based on weight reparame-
trisation and budget regularisation. It starts by outlining closely related
work. Then, the core method components are examined, starting with our
weight reparametrisation and then our budget loss. Afterwards, a general
overview of the algorithm is provided. Furthermore, the chapter details
experiments assessing our method performance in various configurations
as well as experiments validating the components of our method and the
choices of hyperparameters. A conclusion summarises the key findings and
highlights of our method for neural network pruning.

Chapter 5 delves into our stochastic pruning method without weight
training. It starts with an introduction and examination of closely related
work. Then, it details the first core component of our method, namely
Arbitrarily Shifted Log Parametrisation, a method for extracting effective
subnetworks using the Gumbel-Softmax technique that solves various issues
that arose from previous methods. Afterwards, it introduces our weight-
rescaling technique and presents its main benefits, as well as our pruning
strategy to freeze the stochastic topology. Subsequently, a method and
algorithm overview outlines the key points of our methods. Furthermore,
the chapter exposes a comprehensive set of experiments that compares our
method against other state-of-the-art methods in various scenarios and
validates the components of our method. The chapter concludes by sum-
marising our findings and results.

12

Chapter 2

Deep Learning Overview

13

14

Contents

2.1

2.2

2.3

2.4

2.5

2.1

Introduction oL 15
Early Architectures 17
2.2.1 Perceptron 17
2.2.2 Multilayer Perceptron 18
Neural Network Training 19
2.3.1 Functional Definition 20
2.3.2 Loss Function and Regularisation 20
2.3.3 Loss Optimisation. 23
Convolutional Neural Networks for Computer Vision . .. 26
2.4.1 Building Blocks 26
2.4.2 Architectures Evolution 31
2.4.3 Architectures Used in Experiments 34
Datasets 36
2.5.1 CIFAR-10 39
2.5.2 CIFAR-100 39
2.5.3 TinylmageNet 40
2.5.4 Train, Validation and Test Sets 41
Introduction

Deep Learning is a subfield of machine learning that focuses on the study of
Deep Neural Networks (DNNs) which have their roots in Artificial Neural
Networks (ANNs). DNNs aim to learn a representation from unstructured
data such as raw images [102], text [12] or audio [61], in an end-to-end
fashion. DNNs have been used to solve a wide range of tasks, including
image and speech recognition [102, 175, 67, 61, 13, 4], natural language
processing [12, 27, 193], object detection [159, 160], semantic segmentation
[125, 118], text and image generation [53, 98, 12] as well as exotic domains
like video games [173, 174] or molecules folding [95]. ANNs were initially
conceptualised based on the understanding of biological neural networks

15

2.1. INTRODUCTION

present in the brain [134, 73]. Rosenblatt proposed in [166] a theoretical
model of a neuron, denoted the perceptron, which was capable of learning
a linear decision boundary. The perceptron model was later extended to
multiple layers of neurons, giving rise to the Multilayer Perceptron (MLP)
[167, 169]. A Multilayer Perceptron is a type of artificial neural network
that extends the concept of a single-layer perceptron by including one or
more hidden layers of neurons connected downstream from an input layer
and upstream to an output layer. Each layer is fully connected to the next,
allowing the model to learn and represent more complex, non-linear rela-
tionships in the input data. Although more capable than the perceptron,
the MLP is still limited by its depth. The next advance came from the
stacking of multiple layers, leading to Deep Neural Networks.

In the context of DNNs, the term deep denotes the stacking of many
layers within a neural network. The concept of DNNs is based on the idea
that the depth and the numerous layers can help in learning features at
various levels of abstraction, enabling the network to learn complex hi-
erarchical pattern representations. For instance, in the context of image
recognition, lower layers learn local features like edges and textures, while
deeper layers learn to identify more abstract concepts like shapes or objects.

The rise of DNNs was made possible by several factors. On the one
hand the increase in computational power, and in particular the use of
GPUs, made the training of large and deep networks feasible. Indeed,
AlexNet, the first CNN to win the ImageNet Large Scale Visual Recog-
nition Challenge [102], was trained on two GPUs in parallel to accelerate
computations. Nowadays, the use of GPUs or dedicated hardware such
as Tensor Processing Unit [94] is ubiquitous and supported by all the ma-
jor deep learning frameworks [1, 147]. On the other hand, the availability
of large-scale datasets such as ImageNet [25] allowed to train or pre-train
deep networks with millions of parameters without overfitting.

This chapter aims to give an overview of the different neural network
architectures, building blocks, training techniques and datasets that are
widely used in Deep Learning for computer vision and in our experiments.
Section 2.2 introduces the early neural network architectures, namely the
perceptron and the MLP. Section 2.3 focuses on the functional definition of
a neural network and its training. Section 2.4 presents the building blocks
and architectures of various CNNs for computer vision, and in particular

16

CONTENTS

the ones we benchmark our methods with (see sections 4.4 and 5.5). Fi-
nally, Section 2.5 gives an overview of the most prevalent datasets that we
used in our experiments.

2.2 Early Architectures

In this section, we present the perceptron [166] and then the Multilayer
Perceptron [167, 169]. Both are the two founding neural network architec-
tures that led to the development of Deep Neural Networks.

2.2.1 Perceptron

The perceptron is a model of artificial neuron, capable of learning a lin-
ear decision boundary. It was proposed by Rosenblatt in 1958 [166] and
conceptualised based on the understanding of biological neural networks
present in the brain [134, 73|. The perceptron is composed of inputs that
are weighted and summed before being passed through a nonlinear func-
tion referred to as an activation function. The conceptual representation of
the perceptron is displayed in figure 2.1 and its mathematical formulation
is defined in equation (2.1):

9 =93> wi-x;i+0) (2.1)

where x; is the ¢th input, w; its associated weight, n is the number of
inputs, b is the bias, g is the activation function, and ¢ is the output of
the perceptron. This formulation can also be written in vector form as in
equation (2.2):

§=g(wi'x+0b) (2.2)

where x is the vector of inputs and w is the vector of weights. The ac-
tivation function ¢ is typically a nonlinear function, such as the sigmoid
or the hyperbolic tangent (see figure 2.5). Due to its shallow architecture,
the perceptron cannot learn complex decision boundaries. Nevertheless, it

17

2.2. EARLY ARCHITECTURES

is possible to stack several perceptrons to learn nonlinear decision bound-
aries, leading to a Multilayer Perceptron.

inputs weights

x]—)W]

summation activation
function

\4

)Y > g(.) y

xn—)wn

Figure 2.1: Conceptual scheme of the perceptron. Each input x; is multiplied
by its associated weight w; and summed to the other weighted inputs. The bias
b is added to the sum and the result is passed through an activation function g
to produce the output 7.

2.2.2 Multilayer Perceptron

The Multilayer Perceptron (MLP) is an extension of the perceptron model,
comprising multiple layers of perceptrons, also referred to as neurons [169].
A MLP with one hidden layer is represented in figure 2.2. In the latter,
the circles represent the neurons and the connections between them, rep-
resenting weights, are materialised by lines. The MLP is the simplest type
of feedforward ANN. Feedforward refers to the fact that the connections
between neurons in the MLP form a directed acyclic graph, where the out-
puts of the neurons from one layer are passed to the next, with no backward
connections or feedback. Using the same notations as in equation (2.2),
the vector form of the MLP displayed in figure 2.2 can be written as in
equation (2.3), where the subscript of activation functions g;, weight ma-
trices w; and bias vectors b; denotes their belonging to the ith layer.

¥ = g2(wy - gi(wW] -x+by) +by) (2.3)

18

CONTENTS

Each layer of the MLP, being fully connected to the next one, enables
the MLP to handle problems that the perceptron cannot solve, such as
problems requiring nonlinear decision boundaries. Furthermore, Cybenko
proved in [24] that an MLP can approximate continuous functions on com-
pact subsets of R". This result is known as the Universal Approxzimation
Theorem. Before the emergence of Deep Learning, MLPs have been ap-
plied to various domains, including voice recognition, image recognition,
and machine translation [199].

input layer hidden layer output layer

x] —

— Vi
X —

— 0
X3 —>

— J3
xn —

Figure 2.2: Conceptual scheme of a MLP with one hidden layer. Each circle
represents a neuron and each line a connection associated with a weight.

2.3 Neural Network Training

Neural Network Training revolves around the optimisation of a mapping
function that learns to predict an output given input data by adjusting
its internal parameters, also referred to as weights. This optimisation, also
called training, involves iteratively tuning these weights so that the discrep-
ancy between the output predicted by the model and the reference output
is minimised. Weights tuning relies on gradient-based methods that hinge
around two core components: the backpropagation algorithm to compute
the gradients and the Stochastic Gradient Descent (SGD) algorithm to
update the weights.

19

2.3. NEURAL NETWORK TRAINING

2.3.1 Functional Definition

Neural networks can be defined as a mapping function from an input space
X to an ouput space). This mapping function f is characterised by a
set of parameters @, often called weights. The training of a neural network
consists in tuning the parameters 6 so that, given an input X, the map-
ping function f output, denoted g, is as close as possible to the associated
true output y. This training is done iteratively by using example pairs
(X,y) € X x Y, where X € X is the input and y €) is the output. In
the context of image classification, X is an image and y is a label that
indicates the class of the associated image. A functional representation of
a neural network is given in equation (2.4), where f is the neural network,
6 is the set of parameters of the network, X € X is the input given to the
neural network and ¢ is the output.

f: =Y (2.4)
Xl—>f(X,(9)=@

Considering image classification, the output ¢ is a probability vector
where the largest coefficient is the one whose index corresponds to the pre-
dicted class of the input image. This vector is generally converted into a
one-hot vector, where the only non-zero coefficient is at the index of the
predicted class. The true label y, referred to as the ground truth, is the
class index so that y € [0;C — 1], where C' is the number of classes con-
sidered. The ground truth can also be converted into a one-hot vector.

2.3.2 Loss Function and Regularisation

Training a neural network aims at finding the optimal parameters 6 that
maximise a performance, quantified by a metric, often based on the dis-
crepancy between the predicted output ¢ and the true output y. However,
optimising directly the metric might be intractable. To solve this issue,
one may define a differentiable cost function and minimise the latter as a
proxy for optimising the metric. Considering k example pairs (X, yx), the
cost function J (), also referred to as the empirical risk, is defined in the
following equation:

20

CONTENTS

S L(F(X5,0), o) (2.5)

where L is the loss function. Note that the true data distribution, and
therefore the risk, is unknown. This is why the empirical risk, computed
with a set of example pairs, is used instead. The minimisation of the
empirical risk alone is not sufficient to ensure good overall performance.
Indeed, the neural network could learn to perfectly predict the output of
the training set but may fail to generalise to unseen data. This phenomenon
is called owverfitting. To prevent overfitting, we add a regularisation term
to the empirical risk. The regularisation term, denoted R, is a function
of the parameters 6 of the neural network which penalises the complexity
of the model, and thus prevents overfitting. To account for regularisation,
the cost function in equation (2.5) is updated to:

Fi0) = L 3 L(F(X.6).9) + R(6) (2.6)

i=1

Loss function. In equations (2.5) and (2.6), the loss function £ is a
measure of the discrepancy between the ground truth y and the predicted
output. Contrary to the metric P which might be non-differentiable, the
loss function is differentiable so that its minimisation can be achieved us-
ing gradient-based methods, subsequently detailed in section 2.3.3. The
choice of the loss function depends on the task at hand. For classification
tasks (not only images), the loss function is often the cross-entropy loss.
For a binary classification problem, the ground truth is a binary variable
y € {0,1} and the predicted output is a scalar f(X,0) = § € [0,1]. The
binary cross-entropy loss is defined as follows:

L(9,y) = —ylog(y) — (1 —y)log(1 - 7) (2.7)

The binary cross-entropy loss defined in equation (2.7) can be extended to
problems with more than two classes. For a classification problem with C'
classes, the ground truth is a one-hot vector y € {0,1}“ and the output is

21

2.3. NEURAL NETWORK TRAINING

a C-dimensional vector f(X,0) =y € RY. The multi-class cross-entropy
loss is defined as follows:

L§y) = - ¥ ylog (6(3)) (23)

=1

In the above equation, y is the unnormalised raw output vector of the
neural network and ¢ is the softmax function, whose expression is given in
equation (2.9). The softmax function is used to convert the raw output vec-
tor of real numbers into a probability distribution. Note that some models
which use the softmax as the activation function of their last layer output
directly a probability distribution, in which case the softmax is not needed.

Considering a vector z = [z1, ..., z,], the j-th component of vector z
normalised by the softmax function is given by:

o(z); = -22L) (2.9)

i exp(zx)
k=1

Regularisation. The regularisation term R is a differentiable function of
the weights 6. It acts as a control mechanism to avoid overfitting by pre-
venting the weights of the neural network from becoming too large, which
can lead to overly complex models that overfit the training data. This is
typically achieved by adding a penalty proportional to the magnitude of
the weights, thereby keeping them small.

Common types of regularisation include ¢; and ¢, regularisation, whose
expressions are shown in equations (2.10) and (2.11) respectively. ¢; regu-
larisation [188], adds a penalty equal to the absolute value of the magnitude
of the weights. On the other hand, ¢, regularisation [78], adds a penalty
equivalent to the square of the magnitude of the weights. Both methods
aim to reduce the magnitude of the weights, but ¢; regularisation is more
targeted towards feature selection, effectively pushing some weights to 0,
whereas /5 restrains globally their magnitude.

The regularisation term R is added to the cost function with a regu-
larisation coefficient, usually denoted as A, which is a hyperparameter that

22

CONTENTS

balances the trade-off between fitting the training data (minimising the
loss £) and limiting the complexity of the model (minimising R).

For a network with L layers and parameters 8 = {wy,...,wr}, the ¢
and /5 regularisation term is defined as follows:

L

R (0) = A Zl w1 (2.10)
\ L

R, (0) = 5 ; KAk (2.11)

where ||.||; and ||.||3 respectively denote the sum of the absolute value and
the sum of the squaring of each element of the vector.

2.3.3 Loss Optimisation

As mentioned before, the training of a neural network involves finding the
optimal set of parameters 6 that minimises a cost function J(#). This pro-
cess of optimisation is typically carried out using gradient-based methods
which rely on the iterative adjustment of the parameters in the opposite
direction of the gradient of the cost function. The gradient of a function
provides the direction of the steepest ascent at a given point [11]. Thus, by
moving the parameters in the opposite direction of the gradient, we seek
to descend to a local minimum of the function.

Backpropagation. One critical step in the optimisation process is the
computation of the gradient of the cost function with respect to the param-
eters, V.J(0). These gradients are computed with the backpropagation al-
gorithm [169] which is an application of the chain rule (see equation (2.12))
to efficiently compute these gradients. It involves a forward pass through
the network to compute the outputs and thus the loss, and a backward pass
to calculate the gradients. During the backward pass, the partial derivative
of the cost with respect to each parameter is computed, starting from the
output layer and going back to the input layer. The previously computed

23

2.3. NEURAL NETWORK TRAINING

derivatives from the subsequent layers are used to compute the ones of
the earlier layers, making the backpropagation algorithm computationally
efficient.

0z 0z0y

Stochastic Gradient Descent. Once the gradients are calculated, they
are used to update the parameters. The most prevalent method for pa-
rameter updates is Stochastic Gradient Descent (SGD), a derivative of the
Robbins—Monro algorithm [164]. In SGD, the gradient of the loss function
is computed for a random subset of the data (a batch or mini-batch), and
the weights are shifted in the direction that decreases the loss function.
This is achieved by subtracting the gradient of the cost function with re-
spect to that parameter multiplied by a learning rate 7:

Q(t) (17((9)

9(t+1) .

]

(2.13)

where GZ@ is the ith parameter at iteration ¢. The SGD algorithm is de-

tailed in algorithm 1. The use of mini-batches in SGD leads to a trade-off
between computational efficiency and estimation accuracy. Indeed, the
gradient is estimated using a subset of the entire training set, which is, on
the one hand, less accurate than using the whole dataset, but on the other
hand, less computationally intensive. The size of the mini-batch, which
is a hyperparameter of the training algorithm, determines this trade-off
and should also be chosen depending on the computational and memory
resources available. Note that the size of modern datasets, subsequently
detailed in section 2.5, makes it intractable to evaluate the gradients on
the whole dataset in one step, hence the use of mini-batches.

Learning Rate. The learning rate is a hyperparameter that determines
the step size of the update at each iteration while moving toward a min-
imum of the loss function (see equation (2.13)). Setting the learning rate
too high can cause the learning process to converge too quickly or overshoot
while setting it too low can make the learning process slow to converge, as

24

CONTENTS

Algorithm 1 Stochastic Gradient Descent Algorithm

Require: Learning rate n, mini-batch size m, Initial parameters (0, m’ >
m training pairs (X,y) € X x), Loss function J
while Stopping criterion not met do
Sample mini-batch of size m from training set
Compute gradient estimate on mini-batch: § <+ V.7 (0)
Update parameters: 80+ « 9 — pg
end while
return Optimal parameters 6

shown in figure 2.3.

35

30

25

20

J(x)

15

10

—o— =001

- n=0.1

—— n=1.01

0||||||||||||'| [B BN |

-6 -4 -2 0 2 4 6
X

[$)]
TTTTTITTTT

Figure 2.3: Illustration of the effect of the learning rate on the convergence of
the gradient descent. The gradient descent has been applied iteratively for 20
epochs. On the one hand, a too-high learning rate (n = 1.01) causes the gradient
descent to overshoot the minimum of the loss function. On the other hand, a
too-low learning rate (n = 0.01) causes the gradient descent to converge slowly.

Alternative methods. To enhance the performance of SGD, various
modifications and extensions have been proposed, such as SGD with mo-
mentum [181, 150], RMSProp [75], or Adam [100]. These methods aim
to adjust the learning rate dynamically or dampen the oscillations in the
gradient descent to achieve faster and more stable convergence.

25

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

For instance, SGD with momentum [181, 150] uses a momentum co-
efficient v and smoothes the variations of the descent direction, thus pre-
venting the optimisation from getting stuck in small local minima. The
momentum term is a moving average of the gradient, here denoted v, and
it is used to update the parameters as shown in equation (2.14). In this
equation, the momentum coefficient vy € [0, 1] is a hyperparameter that is
typically set close to 1, 0.9 being a common value.

Vip1 = YU + nVJ(@)

(2.14)
9t+1 =0, — Ut4+1

2.4 Convolutional Neural Networks for Com-
puter Vision

In the field of computer vision, CNNs have emerged as effective archi-
tectures that enable high performance on image classification tasks. The
effectiveness of CNNs lies in their architecture that leverages the Convo-
lutional (Conv) layers to automatically learn abstract features from visual
data in a hierarchical fashion. In this section, we explore the building
blocks of CNNs and various architectures that have been widely used and
became de facto standards in the literature.

2.4.1 Building Blocks

This section covers the most common building blocks of CNNs for com-
puter vision. These building blocks are organised in layers that are stacked
to form neural network architectures subsequently detailed in sections 2.4.2
and 2.4.3.

Convolutional layer. Conv layers are one of the core building blocks of
CNNs. Each convolution layer performs a series of spatial convolutions on
the input data using a set of learnable filters or kernels. These filters are
designed to extract low-level features such as edges, corners, and textures
in the early layers, while they learn high-level features like object parts or

26

CONTENTS

even whole objects in the deeper layers. Contrary to manual feature en-
gineering, the features learned by Conv layers are learned in a end-to-end
fashion. The 2D convolution operation is defined in equation (2.15) :

Fp—1 ky—1

Y = Z—:o bz% Xicaj—b Kap (2.15)

where X is the input, K is the kernel of size kj, x k,, and (7, j) are the spa-
tial coordinates in the output feature map. Note that some Deep Learning
frameworks implement cross-correlation instead of convolution. In the for-
mer, the kernel is not spatially flipped leading to the cross-correlation not
being commutative [52]. The Conv layer kernels are typically smaller than
the input along width and height dimensions (they are generally 3 x 3 [67])
but comprise as much channels as the input. During the forward pass, each
kernel is spatially convolved channel-wise with the input and the convo-
lution outputs are summed along the channel dimension to yield a single
scalar for each kernel position on the input (see also figure 2.4a).

Conv layers are more computationally efficient than Fully Connected
(FC) layers, as they have a form of weight sharing baked in. Indeed, the
same kernel is applied to every location of the input, which brings two
main benefits: (i) the number of parameters is independent of the input
size and (7i) a single learned kernel, acting as a feature detector, can be
used in multiple locations. This is especially useful for early feature de-
tector that detects basic shapes or textures. In addition, because of the
kernels being convolved across the whole input, Conv layers are also less
sensitive to spatial translations that might occur in different instances of
the same class.

Fully connected layer. FC layers, also known as Dense layers are often
the last layers of a CNN, effectively serving as a classifier, whereas the Conv
layers act as a feature extractor. FC layers perform high-level reasoning by
conducting non-linear transformations of the extracted features and com-
bining them to make decisions. In an FC layer, each neuron is connected
to every neuron in the previous layer. A FC layer can be described as a
matrix-vector product as in equation (2.16) (see figure 2.4b).

27

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

y=w!-x+b (2.16)

where x is the input vector, w is the weight matrix and b is the bias.
In the context of CNNs, before passing the output of the last Conv layer
to the first FC layer, it needs to be flattened or reshaped into a single
column vector. The final layer in a CNN is a FC layer that has a num-
ber of neurons equal to the number of output classes, and it typically uses
a softmax activation to output a probability distribution over those classes.

Input Feature Map Input Features
Output Feature Map

— Output Features

L w L m

Connection

o T— Neuron

(a) Convolutional Layer (b) Fully Connected Layer

Convolution Kernel

Figure 2.4: Conceptual representation of a Convolutional and a Fully Con-
nected layer. The Convolutional layer (figure 2.4a) takes a multi-channel input
and produces a multi-channel output. Each coefficient of the output is com-
puted by applying a convolution operation at a corresponding location in the
input. The Fully Connected layer (figure 2.4b) takes a vector input and pro-
duces a vector output. Each connection is represented by a weight in the weight
matrix.

Activation functions. They are often applied to the output feature map
of a convolutional or fully connected layer, resulting in the activation map
or activations. These functions introduce non-linearity into the model,
allowing it to learn more complex patterns [125]. A common activation
function used in CNNs is the Rectified Linear Unit (ReLLU), represented as
f(x) = max(0,x). Other functions like the sigmoid f(z) =1/(1+e ") or
tanh f(x) = (e —e™™)/(e"+e™ ") functions have been used (see figure 2.5),
however, the ReLLU is preferred over the latter for its computational effi-
ciency and its ability to mitigate the vanishing or exploding gradient prob-
lem [77, 50].

28

CONTENTS

3.0 RelLU

—— Tanh
—— Sigmoid

TTTTTTY

25

2.0

1.5

f(x)

1.0

0.5

0.0

-0.5

IIIIIIIIIHIIIIIIIIIIIIIIIIIIIIII'

-1.0 e e e e e e o e BB e e e e |
-3 -2 -1 0 1 2 3
X

Figure 2.5: ReLU, tanh and sigmoid activation functions. Best viewed in
colours.

Pooling. This operation is often employed after Conv layers in a CNN
and aims at progressively reducing the spatial extent of the input repre-
sentation, thus reducing the number of parameters and computations in
the network. This also helps control overfitting and increases the recep-
tive field of the subsequent layers. The pooling operation is performed
independently on each input channel, so the number of channels remains
unchanged. The two most common types of pooling are maz and average
pooling. The former selects the maximum value in each window (often of
size 2 x 2), while the latter computes the average value of the window.
Given an input matrix X, the output matrix Y for a certain spatial loca-
tion (i, j) is defined in equation (2.17) for maz pooling and equation (2.18)
for average pooling:

Y= (a,b)e[o,kflahxx [0,k —1] Kita,jth (2.17)

1 kn—1k,—1

yavs - - Xivu s 2.18
7 kh % k'w GZ_O bgo +a,j+b ()

29

2.4. CONVOLUTIONAL NEURAL NETWORKS FOR COMPUTER VISION

where kj, and k,, represent the height and width of the pooling windows
respectively. Note that pooling has no learnable parameters. It only down-
samples the input based on a fixed function.

Batch Normalisation. Batch Normalisation (BN) is a technique intro-
duced in [90] to combat the issue of internal covariate shift in deep neural
networks, thereby accelerating training and improving generalization. Co-
variate shift refers to the changes in the distribution of features in the
training and test dataset, which can lead to slow convergence, make the
network harder to train or hinder its generalisation capabilities. BN nor-
malises the input of the layer by adjusting and scaling the activations of
the previous one. For each mini-batch of inputs (for instance, the activa-
tion map of the previo