
University of London

Imperial College of Science, Technology and Medicine

Department of Electrical and Electronic Engineering

Propagation of Rumours and Detection of
their Sources in Social Networks

Robin Dupont - CID 01277640

First Marker and Project Supervisor: Professor Pier Luigi Dragotti
Second Marker: Mike Brookes

MSc Communications and Signal Processing
2016-2017

Abstract

Online social networks have a gradually increasing importance in our daily lives. They

are a fast and reliable way of communication for human beings. Moreover, they provide a

simple representation of human communities. Providing humans with fast communication

methods is a favourable ground for rumours spreading. If the propagation of the rumours

is somehow similar to the spreading of epidemics or diseases, finding the source of the

rumours is a whole new problem, which drew attention of researchers recently.

This project tackles the problem of estimating the source of rumours, which are propa-

gating in a social network. Use is made of a small number of monitoring nodes, which are

regular nodes reporting information about the time of their infections by rumours.

This report contains explanations about the modelling of the rumour spreading across a

network. A detection algorithm providing a ranking of the candidate nodes is presented.

It is using two techniques described in the report: the creation of a set of candidates and

the ranking of the candidates based on the scattering of the arrival of the rumours.

The performances of this detection algorithm are investigated under different conditions.

It follows that there is a good probability of detection for rumours spreading fast enough

in small world graphs.

i

ii

Acknowledgements

I would like to thank my project supervisor, Professor Pier Luigi Dragotti, for his support

all along the project, and for giving me the opportunity to tackle a challenging but

nevertheless interesting subject. His precious advices and remarks helped me to keep

progressing in my project and pushing forward my researches.

I would also thank some friends of mine for a few enlightening discussions we had, as well

as their moral support.

Finally, I would like to extend the thank to my parents, for their continuous support and

encouragement. They always provided me with excellent working conditions.

iii

iv

Contents

Abstract i

Acknowledgements iii

1 Introduction 1

1.1 Motivations . 2

1.2 Project Aims . 3

2 State of the Art 5

2.1 Related Literature Survey . 5

2.2 Overview . 7

3 Problem Statement and Terminology 8

3.1 A new approach . 8

3.2 Assumptions . 10

3.3 Terminology . 12

3.4 Modeling a social network trough graphs 13

v

vi CONTENTS

3.4.1 Three types of graphs . 14

3.5 Markov chains and 1D random walk . 19

4 Propagation of the rumours and identification of the source 20

4.1 Graph creation . 20

4.2 Propagation of the rumours . 21

4.2.1 Propagation algorithms . 21

4.2.2 Rumour propagation on different types of graphs 23

4.2.3 Monitoring node reporting . 27

4.3 The detection . 27

4.3.1 Method based on first arrival time and on sets intersections 27

4.3.2 Method based on similarity of cumulative arrival time distributions 33

4.3.3 Global detection algorithm . 40

5 Results analysis 42

5.1 Settings of the performance analysis . 42

5.2 Performances analysis . 43

5.2.1 Metrics comparison . 43

5.2.2 Standard parameters results . 45

5.2.3 Influence of the percentage of monitoring nodes 47

5.2.4 Type of graphs . 49

6 Conclusion 52

6.1 Overall remarks . 52

6.2 Future Work . 53

Bibliography 54

Appendices 57

vii

viii

List of Tables

4.1 Example of the representation of the information yielded by monitoring

nodes . 27

5.1 Average rank of the real source and distance from the first candidate to

the source for standards parameters. 46

5.2 Average rank of the real source and distance from the first candidate for

different percentage of monitoring nodes. 48

5.3 Average ranking of the real source S and distance from the first candidate

to the source for different types of graphs 50

ix

x

List of Figures

3.1 Example of real social network : The karate Club network as presented by

Zachary[16] . 14

3.2 Example of a Small World Graph with 50 nodes, 5 neighbours per node,

with a probability of rewiring of 0.3 . 17

3.3 Example of a Scale Free Graph with 50 nodes 18

3.4 Example of a Balanced Tree Graph with 85 nodes, 4 neighbours per node

and a depth of 3 . 18

4.1 Example of a Small World Graph with the different types of nodes represented 23

4.2 Same graph as Figure 4.1, after 2 steps of rumours propagation 23

4.3 Same graph as Figure 4.1, after 4 steps of rumours propagation 24

4.4 Same graph as Figure 4.1, after 8 steps of rumours propagation 24

4.5 Example of a Balanced Tree Graph with the different types of nodes rep-

resented . 25

4.6 Same graph as Figure 4.5, after 2 steps of rumours propagation 25

4.7 Same graph as Figure 4.5, after 4 steps of rumours propagation 25

4.8 Same graph as Figure 4.5, after 8 steps of rumours propagation 25

xi

xii LIST OF FIGURES

4.9 Example of a Scale Free Graph with the different types of nodes represented 26

4.10 Same graph as Figure 4.9, after 2 steps of rumours propagation 26

4.11 Same graph as Figure 4.9, after 4 steps of rumours propagation 26

4.12 Same graph as Figure 4.9, after 8 steps of rumours propagation 26

4.13 Example of rumour propagation as a markov chain along the shortest path

between the source node and the monitoring node 28

4.14 Example of usage of first arrival time information to determine candidates

per node and then possible sources. 31

4.15 Example of an experimental cumulative distribution of the Time of Arrival

(ToA) for a monitoring node in the graph show on fig. 4.16 34

4.16 Example of a Small World Graph, used for simulation. 34

4.17 Example of delays repartition for a rumour propagating to a target node 2

hops away from the source. The repartition is shown only up to 3 delays . 36

4.18 Comparison of cumulative distributions. On the left, the theoretical distri-

bution at a monitoring node yield by the real source (in orange) and the

experimental one at the same monitoring node (in blue). On the right, the

same experimental distribution (in blue) and a distribution yield at the

same monitoring node by a node which is not the source. 38

4.19 Schema explaining the process of ranking the nodes 39

5.1 Comparison between the two metrics with standards parameters 44

5.2 Comparison of the different probability of detection for different assumption

: the source is the first one, the source is in the first five and the source is

in the first ten. 45

5.3 Probability of detection for different percentage of monitoring nodes 48

5.4 Probability of detection for different types of graphs 50

xiii

xiv

Chapter 1

Introduction

This report aims to tackle the problem of the modelization of rumour spreading across a

social network as well as the identification of the source of those rumour. The propagation

of the rumours depends on different parameters which will be discussed. A detection algo-

rithm will be presented with the relevant background theory, an eventually, the proposed

solution performances will be analyzed, for different configurations.

The first Chapter of this report presents, from a general point of view, the aims of the

project, the motivations and the possible applications. Related work is presented in the

chapter two. Some article related to the field of study of this report are presented and

the main conclusions are highlighted. Then, the third chapter settle the problem in a

mathematical way. It presents how social networks are modelled and expose the contri-

bution of this project. Next, the fourth chapter describe how rumours are propagated and

tackles the detection problem by explaining the detection algorithms. The fifth chapter

is dedicated to the performance analysis of the algorithms: metrics are established and

the performances of the algorithms are investigated. Eventually, conclusions about this

project are drawn in chapter six.

1

2 Chapter 1. Introduction

1.1 Motivations

Online social networks are an uprising trend. They allow people to communicate and

share information all around the world, almost instantly. These networks are particularly

interesting in so far as they present a digital version of already existing social commu-

nities based on real social interactions. This kind of social media dramatically simplifies

the analysis of human communities because friendship and interactions are now binary

information: there are either a relationship between two person and interactions or not.

Moreover, the graphs obtained from social networks are representing the human commu-

nities in a good approximation since a tremendous part of the human interactions are

now using such networks. It means that deductions made from the social graph can be

extended to the human communities.

Among all the information that are circulating on social networks, rumours are the one

which can be the most harmful. A rumour is a piece of information of any kind (a mes-

sage, a picture, a video, etc ...) that is generally spread as a word of mouth from people

to people. Rumours could be harmful because the piece of information they carry is not

validated by any kind of authority, and the source is not known. Indeed, it is difficult to

determine the source of a rumour because people only know who told them the rumour

and to whom they told it.

The aim of this project is to present a method to detect the source of a rumour in a

social network. This allows to achieve several objectives. Finding the source of rumours

in a social network can be a way to perform early identification of influencers. Influencers

are people whose messages have a massive impact on the people connected to them, they

influence the other people, hence their name. If the information that a person reveals

behave like a rumour, it may be because he can be a potential influencer. Finding the

source of rumours can also help the police to identify and arrest people spreading rumours

1.2. Project Aims 3

to perform psychological harassment on targets.

However, the detection of the source of rumours can be used for different problems.

Identify an infected computer propagating a virus or a worm through a computer network

such as internet or on a local network. Or detect the location of a pollution source in a

water distribution network.

1.2 Project Aims

This project main objective is to provide an algorithm to detect the sources of rumours

in a social network. The major milestones of this work are: a clear definition of the

problem as well as the assumption and hypothesis made in order to solve it, a reusable

graph generator and rumour spreading simulator to perform the tests, the derivation of

an algorithm to determine the source of the rumours and a parallel performance analysis

tool to assess the performances of the algorithm.

A literature review has given some insight about common practices in this field of re-

search. The diffusion of a rumour in a social network is very similar to the Susceptible

Infected compartmental model (SI model) used in epidemiology. The knowledge of this

model, the Markov chain theory as well as some knowledge about graph theory helped to

realise the first milestone: the reusable graph generator and rumour spreading simulator.

The Python language have been used to guarantee a potential better reusability in the

industry domain.

Some mathematical works have been done in the light of the recent research paper related

to the subject has led to the derivation of a probability formula, which has been combined

with set theory in order to produce a base for the detection algorithm. The detection

4 Chapter 1. Introduction

algorithm yields a ranking of possible candidates, which allows more flexibility than just

outputting a best candidate.

To assess the performance of a such algorithm, it is necessary that several tests should be

run, in order to eliminate statistical variations, since the simulation is not deterministic.

A simulation can be time consuming. Consequently, running tens of it is even more.

Thats why it is needed to speed up the computations. Therefore, a parallel performance

analysis tool has been developed, allowing to run simulations in parallel.

Chapter 2

State of the Art

2.1 Related Literature Survey

• ”Identifying Infection Sources and Regions in Large Networks” [11]. In this

paper, the authors aim to estimate infection sources in graphs with the knowledge

of the graph topology and the state of the nodes: either infected or not. Their

estimator is based on the count of all the possible infection sequence. The infection

sequence represents the order in which the nodes have been infected. Their estimator

can operate when there are 2 sources in a tree graph. The authors also provide a

method for estimating the number of rumour sources in the graph. Eventually, if the

maximum number of sources is known, their estimator appoints a best candidate a

few hops from the true source.

• ”Rumors in a network: Whos the culprit?” [13]. In this paper, the authors

used the Susceptible-Infected model to simulate the propagation of rumours on a

network. They built an estimator which requires knowledge of the graph topology,

as well as the infected graph. The infected graph is the subgraph formed by all the

infected nodes. Their estimator is a maximum likelihood estimator using topological

information, which is called rumour centrality. This estimator is able to identify

5

6 Chapter 2. State of the Art

the source exactly, or a best candidate a few hops away from the real source. They

focused their study on trees and then investigated the performance of their estimator

on both synthetic and real graphs. On line-like growing trees, the probability of

detection of their estimator tends to 0, whereas it is not the case for regular trees

with a branching factor higher or equal to 3.

• ”Finding Rumour Sources on Random Trees” [12]. This paper is from the

same authors as [13]. They tackle the problem of the line-like growing trees. They

kept the same estimator and derived result from it: this estimator achieve a strictly

positive probability of source detection for random graph. Furthermore, the authors

show that the probability that the distance between the best candidate and the real

source is more than k hops decay exponentially with k.

• ”Rumor Centrality: A Universal Source Detector” [14]. This paper is a

slightly modified version of [12], which tackles the same problem and yields the

same results.

• ”Identifying rumors and their sources in social networks” [7].The authors

of this paper provide an approach for rumours source detection in graphs as well as

a way to classify the information propagate in the network. The classification allows

to assess if the information is indeed a rumour or not. The authors used directed

graphs to model social networks. They used monitoring nodes which report if they

have been infected by the rumours or not. The rumour source estimator used

the information provided by the monitoring nodes and combine them with node

connectivity information and shortest path information.

• ”Information diffusion in online social networks” [5]. The authors of this

paper aim to summarize methods related to information diffusion in social networks.

This paper covers the popular topic detection based on spikes of activity for a specific

topic, diffusion models, explanatory models to give understanding about the path

taken by the information in the graph, predictive models to give insight about the

2.2. Overview 7

possible ways a information might spread across a network and eventually methods

for possible influencers detections, based on the assessment of their influence on

other nodes.

2.2 Overview

Most of the paper reviewed present an estimator for rumour source detection in a graph.

The rumour is propagated by a Susceptible-Infected model which spreads rumour across

the graph.

The same assumptions are made. The graph topology is known: all the nodes present in

the graph as well as all their links to other nodes are known.

Most methods rely on having the knowledge of either a subset of the infected nodes, or

the full set of the infected nodes. This last point seems to be a strong assumption, which

might not be easily applicable in real life.

Most of the papers focuses their researches on tree graphs, although they tested their

estimators on other types of graphs as well.

Chapter 3

Problem Statement and Terminology

In this section, the terminology of this project will be detailed, and the problem will be

settled. First, it is explained to what extent this project brings a new contribution in this

field of studies. The relevance of the hypothesis and assumptions that are made will be

discussed. Then, the terminology that is used later in this report is introduced. Next,

the usage of graphs to simulate a social network will be examined, as well as the different

types of graph with their advantages and drawbacks. Eventually, the rumour propagation

simulation will be presented.

3.1 A new approach

In order to estimate the source of rumours in a social network, time-based information

is used. In most research papers, there is no assumption about the time. The start

date of the spreading is not known, neither are the epochs or dates at which the nodes

were reached by the rumour. However, to counterbalance this, the state of all the nodes,

reached or not by the rumour, is known.

8

3.1. A new approach 9

In this report, there are some differences with previous works. Time information will be

assumed to be known. However, in order not to have a trivial problem, a new approach

will be studied, based on monitoring nodes. Monitoring nodes are regular nodes, except

that they report at which epoch they have been reach by the rumour. The monitoring

nodes represent only a fraction of all the nodes.

Each monitoring node will report at which time step it has been reached by a rumour.

With such time-based information, and since there is a single source which is propagating

several rumours, it is possible to derive the experimental cumulative distribution function

of the probability for a node to be infected after a certain number of steps.

A theoretical probability of infection and its cumulative distribution function can be

computed. By comparing this theoretical cumulative distribution function with the ex-

perimental one through different metrics, it is possible to rank the possible sources based

on the similarity of these two cumulative distribution function.

In order to reduce furthermore the number of candidates, time information gives insight

about the possible set of candidates. By combining the information given by each moni-

toring node, the set of possible candidates is reduced.

These steps are the base of the new approach that will be detailed in this report.

In contrary to other research papers, this report will investigate the influence of the the

probability of propagation on the detection performances.

10 Chapter 3. Problem Statement and Terminology

3.2 Assumptions

To settle the problem, some assumptions have been made. Here is the list of them and

some insight to justify them when needed.

• Knowledge of the network topology: The network topology is the arrangement

of nodes and edges between them. Knowing the network topology means that we

know to which other nodes is connected each node.

This assumption can be easily justified, since we are interested by the propagation

of rumours on online social networks. Such social medias provide an easy binary

representation of relationship that allows to represent the social network as a graph.

• Single source of rumours: Only one node in the network is the source of the

rumours. This is made in order to make use of the different time of arrival at the

monitoring nodes of all the rumours.

One single source of rumours is an assumption that can be argued. However, for

the detection of influencers or people performing psychological harassment, this as-

sumption holds, since this kind of persons tends to spread multiple rumours.

• Unit threshold: The threshold is the number of distinct people that has to tell

one person the rumour before this person starts to believe in the rumour and start

propagating it as well. In order to simplify the problem, the threshold have been

set to one.

This assumption is made only to simplify the problem since usually people might

not trust a rumour straight away. However, one could argue that since the rumour

is propagating through edges between close people, the threshold can be one because

people might trust a rumour straight away if this one come from a trusted person.

3.2. Assumptions 11

• Undirected edges: in order to model a bidirectional relationship, the edges are

undirected.

A such assumption is valid in the general case, because people talk and respond to

each other. This assumption however might not hold if the detection technique is

applied on a graph representing an online social network such as Twitter where the

edges between people are mostly directed.

• SI model for rumour spreading: The rumours spreads similarly to an epidemic

according to the SI model (Susceptible and Infected). A person can either ignore

the rumour and stay idle, or aware of the rumour and propagating it. It is assumed

that one cannot forget the rumour.

Rumours spreads generally really fast because it is a very surprising or choking piece

of information. Hence, assuming that no one is going to forget about the rumours

seems legit.

• Same number of neighbours: The number of neighbours for each node in the

network is the same. It means that each person is talking to the same number of

peoples.

The degree distribution in a real human community is approximately following a

power law. Therefore, a constant number of neighbours seems not appropriate. But

only close relatives are only considered. It can be assumed that on average everybody

has the same number of close relatives.

• Same probability of propagation: The probability of propagation of the ru-

mours is assumed to be constant. Each node has the same probability to propagate

the rumour to its neighbours.

People are very different from one another, and the probability might in reality not

be constant. But it is assumed that on average it is the case.

12 Chapter 3. Problem Statement and Terminology

• Multiple rumours spreading: The source is spreading several rumours in the

network. The number of those rumours is known. With this several rumours, it is

possible to establish the experimental cumulative distribution function of the prob-

ability of being reach by the rumour after a certain number of steps.

The people spreading rumours on social network are generally spreading several ru-

mours. They do so because they can earn some money. For example, ads on the

website where the rumour facts are described generates money. People performing

psychological harassment want to discredit someone, thus they spread several ru-

mours as well.

• Monitoring nodes and time-based information: Before the start of the rumour

spreading, a few nodes, picked at random, are going to be turned into monitoring

nodes (e.g. 10% of the nodes). These nodes will report at which step they have

been reach by the rumour.

One could argue that it is not possible to have precise time information. This as-

sumption is clearly the most ambitious one. If in the general case it might not hold,

it is possible sometime to obtain such information. Some rumours are posted on

website where there is a time stamp, and the person acting as a monitoring node

can report the time at which the rumour have been seen.

3.3 Terminology

Here is a list of the variables commonly used in this repot and their meaning, unless stated

otherwise.

G is the graph

N is the number of nodes in the graph G

3.4. Modeling a social network trough graphs 13

i is a variable representing the index of a node of the graph G

S is the rumour source

M is the number of monitoring nodes in the graph G

W is the set of all the monitoring nodes

Wi is the monitoring node which node index in G is i

p is the probability of propagation of the rumour

v is the number of neighbours

R is the number of rumours propagated by the source

Iji is the state of node i with regarding rumour j. This is either equal to 1 (the node

is infected), or 0 (the node is not infected.)

k is a variable representing a number of steps

kji is the step at which the monitoring node i has been infected by rumour j

Di is the maximum distance hop-wise between node i and the source

dij is the length of the shortest path between node i and j

Pm
n is the probability that node m hops away from the source is infected by a rumour

by step n

C is the global set of all the candidates nodes c

Ci is the set of all the candidates nodes c regarding the monitoring node i

3.4 Modeling a social network trough graphs

In human communities, people are usually talking to a small group of people that can be

called friends or relatives. Everyone has a small number of friends, small in comparison

to the total number of people in the considered community. People exchange with their

friends and relatives much more than with the other peoples. Moreover, they exchange

on any kind of subjects, especially personal topics, which is not the case with non-friend

peoples. Therefore, since we are interested in the propagation of rumours it can be con-

sidered that people only interact with a reduced number of close relatives, which around

14 Chapter 3. Problem Statement and Terminology

five [8].

In order to model this kind of interactions, a graph structure will be used. Each person

will be represented by a node of the graph. To represent the fact that two people are

close relatives, an undirected edge links the two nodes. The edge is undirected to reflect

the fact that the interactions between individuals are bidirectional.

Karate Club Graph

Figure 3.1: Example of real social network : The
karate Club network as presented by Zachary[16]

Figure 3.1 shows an example of a graph representing a real human community. This is

the famous karate club graph as described by Zachary [16].

3.4.1 Three types of graphs

To model human communities, several types of graphs will be used. Each type of graph

has its own advantages and drawbacks, depending on the way the nodes are organised and

links to one another. But the core principle (nodes represent people and edges represent

friendship) is the same. Tree types of graph will be used:

3.4. Modeling a social network trough graphs 15

• The Watts and Strogatz Model [15]. This model yields random graph with small-

worlds properties.

• Scale-free graphs. These graphs have a power law distribution, which is what can

be observe in real social networks.

• Tree graphs. Since a lot of research papers used that kind of graph for rumour

detection.

Graphs yielded by the Watts and Strogatz model are known for showing good small world

properties that mimic the real social networks properties. Like the random graphs, the

average shortest path is small, which is what is expected from reality [10]. Moreover, and

in contrary to random graphs, Watts and Strogatz small world graph show a high clus-

tering coefficient. The global clustering coefficient is the number of closed triads (which

can be seen as all the complete subgraphs of 3 nodes) over the number of all triads (which

can be seen as all the subgraphs of 3 nodes). The clustering coefficient is the probability

of having closed triads in the network.

A high clustering coefficient means that, for three nodes A, B and C, if the edges AB

and BC exists, there is a high probability that the edge AC exist. From a social point of

view, it can be translated as the following sentence: if A and B are friend, and B and C

are friend, there is a high probability that A and C are friend as well. However, that is

what can be observed most of the time in social networks. Hence, with a high clustering

coefficient, the graphs yield by the Watts and Strogatz model are a good approximation

of real social networks.

The main feature of scale free networks is that the degree distribution of that kind of

graph follows a power law. The degree distribution is simply the histogram of the degree

against the number of nodes of that degree. The degree is simply the number of neigh-

bours of a node. In social networks, we also observe a power law distribution. It means

16 Chapter 3. Problem Statement and Terminology

that there are a lot of people with a small number of connections, and fewer people with

a lot of connections. Since this is what can also be observed in real life social networks,

scale free networks are to some extent useful for modelling social networks. The powerlaw

distribution is particularly visible on some nodes with a lot of connections on Figure 3.3

The detection algorithm will be tested as well on tree graphs because this graph structure

has been studied in previous papers. Moreover, even though this structure is not really

suited for the modelling of social networks, it can model well a hierarchy structure, and

therefore model social networks that can appear in companies for example.

Since the Watts and Strogatz graphs exhibits some properties that allow them to model

real social networks with a good approximation, most of the study will be done on these

graphs, and the other types of graphs will be used during the result analysis section, in

order to compare the result obtained with such graphs to the ones with small world graphs.

Graphs construction

Small World Graphs

In order to generate the small world graph, all the nodes are positioned on a circle. Then

each node is linked to its v neighbours on his left and its v
2

neighbours on its right (it

can potentially be linked to bv
2
c + 1 neighbours on one side and bv

2
c on the other if v is

odd), where v is the number of neighbours. Then for each node, each edge can be rewired

with a certain probability to another node picked at random in the graph, which is not

necessary a neighbour. An example of Small World graph is shown on Figure 3.2.

3.4. Modeling a social network trough graphs 17

Small World Graph

Figure 3.2: Example of a Small World Graph with 50
nodes, 5 neighbours per node, with a probability of
rewiring of 0.3

Scale Free Graphs

The scale free graph is generated with the model provided by [1]. This model yields a

directed graph, which is then converted to undirected. First a graph G0 is created with a

certain amount of edges and a random of nodes.Then the methods goes iteratively : Gn+1

is created from Gn with 3 rules.

With probability α a new node is added with an edge from this new node to an older one,

chosen based on is degree.

With probability β, a new edge is added from an old node to another old node. They are

chosen independently according to their degree.

With probability γ, a new node is added with an edge from an old node to this new node.

The old node being chosen according to his degree.

Where α, β and γ are probabilities such as : α + β + γ = 1.

An example of scale free graph is shown on Figure 3.3.

18 Chapter 3. Problem Statement and Terminology

Scale Free Graph

Figure 3.3: Example of a Scale Free Graph with 50
nodes

Regular Tree Graphs

A regular tree graph can be generated by taking a root node. Then this root node is given

v neighbours called leaf nodes. Each of these v leaf nodes gets v additional leaf nodes as

well, and so on, until a stopping criterion is met. The stopping criterion can either be

the total number of nodes, or the depth of the graph. The depth of the tree can be seen

as the length of the shortest path between the first root node and the last leaf node. An

example of a Balanced Tree Graph is shown on Figure 3.4.

Balanced Tree Graph

Figure 3.4: Example of a Balanced Tree Graph with
85 nodes, 4 neighbours per node and a depth of 3

3.5. Markov chains and 1D random walk 19

Since small world graphs exhibit valuable properties when it comes to modeling human

communities, the study will focus on small world graph, although the detection algorithm

will be tested on other graphs as well.

3.5 Markov chains and 1D random walk

The problem tackled in this report can be seen as a discrete-time Markov Process. A

discrete-time Markov process is a process where the probability of the next state happen-

ing is only determined by the current state and not by the previous states.

In mathematical terms we have :

P{Xn+1 = j | Xn = in, Xn−1 = in−1, ..., X1 = i1, X0 = i0} = P{Xn+1 = j | Xn = in}

Where i0, i1, ..., in, j are all the possible states and Xk is the state of the process at the

step k. E is the state space, containing all the possible states that Xk can have.

Therefore, going from state i to j can be written this way :

Pij = P{X{n+ 1} = j | Xn = i}

If ones considers the propagation of a rumour along the shortest path, the problem is

similar to a Markov chain or a 1D random walk with the particularity that it is not

possible to go back.

Chapter 4

Propagation of the rumours and

identification of the source

In this chapter, the creation of the graph and the propagation of the rumours in the

graph will be described. Then, a method based on sets intersection will be explained.

Another method based on similarity between the theoretical and experimental cumulative

distribution of time arrival will be presented. Eventually, a detection algorithm combining

the two methods will be presented and detailed.

4.1 Graph creation

The graph is created thanks to the utilities in the script networkUtils.py (see appen-

dices). A few parameters can be changed to model different configurations. Here is a list

of the most important parameters:

• N , the number of nodes

• M , the number of monitoring nodes

20

4.2. Propagation of the rumours 21

• S, the node which is the source of the rumours. The source is chosen randomly

among all the N nodes of the network. The function to initialise the source in the

graph is initSourceNode in networkUtils.py

• W , the set of all the monitoring nodes. The monitoring nodes are chosen randomly

among the N nodes of the network. There are some constraint, though. All the

Wi should have a distinct i. It is to make sure that Card(E) = M . Moreover,

∀i,Wi 6= S : a monitoring node cannot be the source.

• R, the number of rumours to propagates. Typically, R is chosen between one to a

few tens.

• P , the probability of propagation. The higher p is, the faster the rumours are going

to spread in the graph.

• Ti the threshold per node. Always set to one.

N.B.: The threshold is the number of nodes that have to infect a specific node before this

nodes become infected. This is made to model the fact that a person will usually wait to

hear a rumour from different persons before giving credit to it, and eventually starting to

spread it. However, even though setting a threshold randomly as an uniform distribution

U(1, v) would model well the different sensitivity of the people, the threshold is set to one

in order to simplify the problem.

4.2 Propagation of the rumours

4.2.1 Propagation algorithms

In order to understand how the detection algorithm works, it is important to understand

how the propagation of the rumours occurs first. For each rumour a node has two possible

states: either infected or not, which is represented by Iji . A node which is not infected

22 Chapter 4. Propagation of the rumours and identification of the source

stays idle. An infected node propagates the rumour as described in Algorithm 1.

Considering the node i and the rumour j :

Algorithm 1 Propagates the rumour j at node i one step forward

for all neighbours v of node i do
Draw random number r, r ∼ U(0, 1)
if r ≤ p then

Infect neighbour v with rumour j
next v

else
next v

end if
end for

In order to process all the nodes of the network it is necessary to iterate over i and j. The

function in charge of it is infectionForward in networkUtils.py. The global algorithm

can be written as Algorithm 2.

Algorithm 2 Global propagation of the rumours one step forward in the graph

for all the nodes i in the Graph G do
for all the rumours j do

if Iji then
Algorithm 1(node=i,rumour=j)

end if
end for

end for

Every time the function infectionForward is called, the rumours propagate a hop fur-

ther. Every iteration is called a step. The initial state is the step 0. The propagation

algorithm keeps track of the number of steps, to inform the node of their step of infection.

The propagation algorithm ends when all the nodes are infected by all the rumours. The

function isAllInfected from networkUtils.py checks if all the nodes are infected.

4.2. Propagation of the rumours 23

4.2.2 Rumour propagation on different types of graphs

Here are examples of different networks and infection steps. The green dots are the nodes.

The nodes circled in red are infected by some of the rumours. The nodes fully red are

infected by all the rumours. The nodes circled in light blue are the monitoring nodes.

The node in dark blue is the source of rumours.

• Small World Graph: with N = 50, M = 5, R = 3 and p = 0.5.

Initial State for Small World Graph

Monitoring Node
Infected Node
Rumour Source

Figure 4.1: Example of a Small World
Graph with the different types of nodes
represented

Rumor propagation after 2 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.2: Same graph as Figure 4.1,
after 2 steps of rumours propagation

24 Chapter 4. Propagation of the rumours and identification of the source

Rumor propagation after 4 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.3: Same graph as Figure 4.1,
after 4 steps of rumours propagation

Rumor propagation after 8 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.4: Same graph as Figure 4.1,
after 8 steps of rumours propagation

4.2. Propagation of the rumours 25

• Balanced Tree Graph: with N = 85, M = 5, R = 3 and p = 0.5.

Initial State for Balanced Tree

Monitoring Node
Infected Node
Rumour Source

Figure 4.5: Example of a Balanced Tree
Graph with the different types of nodes
represented

Rumor propagation after 2 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.6: Same graph as Figure 4.5,
after 2 steps of rumours propagation

Rumor propagation after 4 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.7: Same graph as Figure 4.5,
after 4 steps of rumours propagation

Rumor propagation after 8 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.8: Same graph as Figure 4.5,
after 8 steps of rumours propagation

26 Chapter 4. Propagation of the rumours and identification of the source

• Scale Free Graph: with N = 50, M = 5, R = 3 and p = 0.5.

Initial State for Scale Free Graph

Monitoring Node
Infected Node
Rumour Source

Figure 4.9: Example of a Scale Free
Graph with the different types of nodes
represented

Rumor propagation after 2 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.10: Same graph as Figure 4.9,
after 2 steps of rumours propagation

Rumor propagation after 4 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.11: Same graph as Figure 4.9,
after 4 steps of rumours propagation

Rumor propagation after 8 steps

Monitoring Node
Infected Node
Rumour Source

Figure 4.12: Same graph as Figure 4.9,
after 8 steps of rumours propagation

4.3. The detection 27

4.2.3 Monitoring node reporting

The monitoring nodes are reporting information, which are helpful to detect the source.

Each monitoring node report the step of arrival for each rumour. If a monitoring node i,

is reached by a rumour j after 4 steps of rumour propagation, then this monitoring node

reports kji = 4. The information is collected at the end of the simulation. The data can

be represented as on Table 4.1.

rumour 1 rumour 2 ... rumour R
W1 k11 k21 ... kR1
W2 k12 k22 ... kR2
...

...
... ...

...
WM k1M k2M ... kRM

Table 4.1: Example of the representation of the infor-
mation yielded by monitoring nodes

4.3 The detection

This section will describe two methods to detect sources and then, the two methods will

be combine create an efficient detection algorithm, providing a ranking of the candidates

nodes.

4.3.1 Method based on first arrival time and on sets intersec-

tions

As described in Section 4.2.3, Each monitoring node is reporting the step of its infection

by each rumour. Such information can be used to infer the maximum distance to the

rumour source. Once the minimum distance found, a set of possible candidates can be

established. Then a subset of candidates can be established from these sets.

28 Chapter 4. Propagation of the rumours and identification of the source

First step

First, an estimate of the maximum distance between the rumour source and the monitor-

ing node is needed. To achieve this, the smallest step of arrival per monitoring node is

identified. This is the step at which the monitoring node have been infected for the first

time by a rumour. This information can be found by selecting the minimum value of each

row of Table 4.1.

Figure 4.13: Example of rumour propagation as a
markov chain along the shortest path between the
source node and the monitoring node

The rumour propagation from the source to the monitoring node can be seen as a Markov

chain, as shown on Figure 4.13, along the shortest path. It is assumed that the rumour

will propagate along the shortest path and at each step, the rumour can either:

• propagate to the next node with propability p

• stay at the current node with the probability 1− p

Hence, it can be established that : If the node is at least k hops away from the monitoring

node, the first rumour is going to reach the monitoring node in at least k steps. Material

implication gives the following rules :

A⇒ B ⇐⇒ ¬B ⇒ ¬A (4.1)

4.3. The detection 29

Where A and B are logical proposition, and ¬A and ¬B are their negations. The symbol

⇒ is the material implication, and ⇐⇒ is the equivalence.

Thus, in our case we have :

• A : The source is at least k hops away from the monitoring node

• B : The first rumour is reach the monitoring node in at least k steps

Hence, we can deduct from the Equation (4.1) that : if the first rumour reach the mon-

itoring node in at most k steps, the source is at most k hops away from the monitoring

node. Topologically speaking, the maximum distance in the graph between the rumour

source and the monitoring node is known. For each monitoring node i, this distance is:

Di = min
j

(k1i , k
2
i , . . . , k

j
i , . . . , k

R
i) (4.2)

Second step

With the knowledge of Di, all the nodes which are farther than Di from monitoring i

can be eliminated: there cannot be candidate to be the rumour source. Hence, all the

remaining nodes are candidates (except the monitoring node itself).

In order to create the set of candidates per monitoring node i Ci, all the nodes c which

satisfies dic ≤ Di should be found. Mathematically speaking, the set described in Equa-

tion (4.3) should be created.

Ci = { c | dic ≤ Di } (4.3)

A natural approach to create the set Ci is to gather all the neighbours of node i and then

30 Chapter 4. Propagation of the rumours and identification of the source

their neighbours, and so on, until nodes that are Di hops away are reached. However,

due to the data structure of the graph (mostly determined by the programming language

or the library used), it is not always possible to perform like this. In this case another

approach has been used.

For each node in the graph, the distance from that node to the considered monitoring

node is computed thanks to the Dijkstra shortest path algorithm [2]. If this distance is

smaller than Di, then the node is added to the candidate set, otherwise, it is not. This

operation is then repeated to obtain a collection of all the Ci: {C1, C2, . . . , Ci, . . . , CM}.

Third step

Since there is a single source for the rumours, the source is the same for all the monitoring

nodes. Consequently, the source have to be in all the candidates sets. The mathematical

formlation is described in Equation (4.4).

S ∈ Ci, ∀i ∈ J0;MK (4.4)

In order to identify all the candidates satisfying Equation (4.4), the intersection of all the

is took (see Equation (4.5)). It yields a subset C of all the nodes which are presents in

all the sets Ci.

C = C1 ∩ C2 ∩ · · · ∩ Ci ∩ · · · ∩ CM (4.5)

The subset C is the final subset of the candidates. It is guarantee that all the candidates

in C are in all the Ci and therefore are possible sources. The Figure 4.14 shows an example

of set intersection with two monitoring nodes, one reporting the source 1 hop away and

the other one 2 hops away. The boundaries represent all the nodes which are candidates

for a single monitoring node, or in other world a set Ci. The intersection of the two

4.3. The detection 31

boundaries is the final set C.

Figure 4.14: Example of usage of first arrival time in-
formation to determine candidates per node and then
possible sources.

Formal algorithm

The global algorithm presenting all the steps to generate the subset of candidates C

is presented in Algorithm 3. The function responsible for the generation of this set is

findPossibleSets2 in networkUtils.py.

Algorithm 3 Generation of C, the subset of all the possible sources

all sets = {}
for all the monitoring nodes i do
Ci = {}
Di = min

j
(kji)

for all the nodes c in G do
dic= compute shortest path(i, c)
if dic ≤ Di then
Ci = Ci ∪ c

end if
end for
all sets = { all sets, Ci}

end for
C =

⋂
all sets

32 Chapter 4. Propagation of the rumours and identification of the source

Advantages

This method allows to simply reduce the number of candidates and ensure that the real

source node is necessary in the final subset. It allows to eliminate a certain number of

nodes and therefore simplify the problem by limiting the number of candidates to inves-

tigates.

The higher the number of rumours is, the more accurate the result is, because it is more

likely that the first rumour will arrive in the minimal number of steps permitted. How-

ever, the algorithm could be run with only one rumour and still produce a useful output.

Under certain circumstances, if the rumours propagates fast enough, this method can

isolate one candidate only. This happens when rumours reach two different monitoring

nodes in the minimal amount of steps permitted.

Drawbacks

This method is computationally expensive, since the distance from all the monitoring

nodes to all the other nodes has to be computed. The worst case complexity is O(MN3),

Where M is the number of monitoring nodes, and N the number of nodes. This com-

plexity is partly due to Dijkstra’s Algorithm, which complexity is O(N2).

The size of the final subset C is influenced by the probability of propagation p. If p is

low, the rumours will take a lot of steps to reach the monitoring nodes. Hence, the Di

will be high and consequently, the sets Ci will cover a lot of nodes. Therefore, if p is low

the size of set C will contain almost all the nodes and the reduction of the number of

possible candidates will not be significant.

4.3. The detection 33

Possible optimizations

Another implementation of Dijkstra’s algorithm whith a complexity in O(E +N log(N))

can be used[4], where E is the number of edges in the network. However it is necessary

to convert the network edges to directed edges with non negative weights.

To speed up the process, loops can be run in parallel, since every loop iteration is in-

dependent from the others. Although this method allows to speed up the process, it is

limited by the number of threads which can be run simultaneously.

4.3.2 Method based on similarity of cumulative arrival time dis-

tributions

In the cases considered, the source is propagating several rumours. Although the prob-

ability of propagation is the same for every rumour and in all the graph, the different

rumours does not spread exactly the same way. Some might experience a bit more delay

than others, by staying at the same node for a step or more. Some might experience less

delay by propagating farther at almost every step. The delay is introduced if the rumour

stays at the same node for at least one step. This occurs with a probability 1−p for every

neighbours, and for every step, as shown on Figure 4.13.

Hence, the step of arrival (or time of arrival) of the rumours at a given node is different,

depending on the rumour. If the total number of rumours received by a node is plotted

against the step number, an experimental cumulative distribution of time of arrival can

be obtained, as shown on Figure 4.15.

34 Chapter 4. Propagation of the rumours and identification of the source

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Step of Arrival

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m
ul
at
iv
e
pr
ob

ab
ilit

y

Example of Experimental Cumulative distribution of rumour ToA

Figure 4.15: Example of an experimental cumulative
distribution of the Time of Arrival (ToA) for a moni-
toring node in the graph show on fig. 4.16

This distribution is the cumulative distribution of the time of arrival of a monitoring node

from the graph show on Figure 4.16. This graph has 200 nodes and 20 monitoring nodes.

The source propagates 25 rumours with a probability p of 0.5

Monitoring Node
Infected Node
Rumour Source

Figure 4.16: Example of a Small World Graph, used
for simulation.

The main idea of this method is to take advantage of the scattering of the time of arrival to

4.3. The detection 35

compare it with a theoretical distribution. If a node, which is supposed to be the source,

yields a theoretical distributions similar to the experimental ones for every monitoring

nodes, there are good chances that this node is the real source.

Theoretical explanations

In order to compare experimental and theoretical distribution, the theoretical distribution

have to be derived. A formula which gives the probability for a node i at di hops from

the source to be infected by step n is needed. As explained in Section 4.3.1 a rumour

propagation along the shortest path can, at each step, either stay at the same node with

probability 1 − p, or propagate to the next node with probability p. Therefore, on its

way to a monitoring node, a rumour can stay at the same node once, several times or not

at all. Figure 4.17 shows an example of the delays possible from 1 up to 3 delays, for a

target node 2 hops away from the source. Consequently, for a given number of delays, it

exists several paths with different delays repartitions satisfying this number of delays.

36 Chapter 4. Propagation of the rumours and identification of the source

Figure 4.17: Example of delays repartition for a ru-
mour propagating to a target node 2 hops away from
the source. The repartition is shown only up to 3
delays

For a rumour moving from the source to a node k hops away, the probability that the

rumour arrive at step n with a specific delay repartition, is presented in Equation (4.6).

P (node infected by step n by one path | di = k) = pk(1− p)n−k (4.6)

However, this is not the probability that the node is infected by step n. To derive this

probability we have to take into account that several paths can have the same number of

delays. Moreover, as shown on Figure 4.17, several delays can occur at the same node. To

take this effect into account a slightly changed binomial coefficient is used. The correct

coefficient counting the correct number of path l hops long with m delays is written in

Equation (4.7), which can be seen as the number of m combinations in a m+l−1 elements

set.

4.3. The detection 37

Γm
l =

(
l +m− 1

m

)
(4.7)

Where Γm
l is the number of m combinations in a l elements set with replacement. All

in all, the final probability formula can now be establish by summing on all the possible

delays. For a node k hops away from the source, the delays can be between 0 (the rumours

propagates straight to the node) to n − k, where n is the number of steps elapsed since

the beginning of the rumour spreading. The probability that a node k hops away from

the source is infected by step n, P k
n , is given in Equation (4.8).

P n
k =

n−k∑
i=0

(
k + i− 1

i

)
pk(1− p)i (4.8)

Practical Implementation

With the Formula 4.8, it is possible to obtain the experimental distribution of the ru-

mours step of arrival. The formula should be applied for different steps ranging from 0 to

the maximum number of steps took by the slowest rumour to reach the last monitoring

node. This value is obtained by computing max
i,j

(kji), where kji are the steps definied in

Section 4.2.3, Table 4.1.

The distributions are discrete, since the x-axis is representing the number of steps. There-

fore, the distribution H can be considered as a vector, where Hi is the value of the cu-

lumative distribution for the step i, or the ith coordinate of the vector. Hence, we can

define the two metrics for the distribution, which are :

• The L2 norm: The distance DPQ between to vectors P and Q using the L2 norm

is :

DPQ =

√∑
i

(Pi −Qi)2

38 Chapter 4. Propagation of the rumours and identification of the source

• The χ2 distance: The distance DPQ between to vectors P and Q using the χ2

distance is :

DPQ =

√
1

2

∑
i

(Pi −Qi)2

(Pi +Qi)

Experimentally, the χ2 is supposed to show more robustness to outliers and to be a

better metric than L2[9]. However it will be shown in Chapter 5 that, experimentally

and for this problem, L2 outperforms χ2.

Figure 4.18 shows a comparison between experimental and theoretical distribution. On

the left, the theoretical distribution is the one yielded by the source, which is very similar

to the experimental one. On the right, one can see that the theoretical distribution from

a node that is not the source is, significantly different from the experimental one.

Figure 4.18: Comparison of cumulative distributions. On the left, the theoretical
distribution at a monitoring node yield by the real source (in orange) and the ex-
perimental one at the same monitoring node (in blue). On the right, the same
experimental distribution (in blue) and a distribution yield at the same monitoring
node by a node which is not the source.

Once all the distances are computed, each monitoring node yields a ranking of the candi-

date nodes. The first one is the node which is the most likely to be the source according to

the considered monitoring node. In order to combine the results from all the monitoring

nodes, a weighting system leading to the final ranking is set.

4.3. The detection 39

All the nodes starts with a score of 0. Then, for each node i, each monitoring node adds

to the score of i its ranking for the considered monitoring node. Then the node are sorted

globally according to their weight. The node with the smalled weight is globally the best

candidate to be the source.

Figure 4.19 sums up the process. Step 1: The theoretical distribution at each monitoring

node is computed for each node, as if this node was the source. Step 2: Each monitoring

node ranks the candidate nodes. Step 3: All the ranks of a node are added together,

forming its weight. Step 4: The nodes are globally sorted according to their weight.

Finally, all the candidates are ranked. The one with the smalled weight is the best

candidate according to the algorithm.

Figure 4.19: Schema explaining the process of ranking
the nodes

40 Chapter 4. Propagation of the rumours and identification of the source

Advantages

In contrary to the first method, this method provides a ranking of the nodes. Moreover,

this method is less computationally expensive than the previous one. The operations made

for each node can be considered as constant in time, except the ranking. The ranking in

Python is in O(n log(n))[6]. Since the ranking is performed by every monitoring node,

and once at the end, the global complexity is in O((M + 1)N log(N)), where N is the

number of nodes in the network and M is the number of monitoring nodes.

Drawbacks

One of the major drawback of this method is that all the nodes have to be tested. Which

takes some time and is useless for some nodes which cannot be the source, as shown in

Section 4.3.1. Moreover, in order to establish the time of arrival distribution, several

rumours are needed. Furthermore, this method works better for lower probability of

propagation p. The lower p is, the more scattered the steps of arrival are, and therefore

the more useful the distribution is.

Possible optimizations

As mentioned in the drawbacks, all the nodes needed to be tested. An optimization

would be to pre-select the candidate nodes in order to limit the computations and have

less candidates.

4.3.3 Global detection algorithm

The remark in the possible optimizations section of Section 4.3.2 suggests that the second

method should be run on a limited set of candidates. In order to achieve this, a natural

4.3. The detection 41

idea is to combine the two methods described in Section 4.3. Hence, this new method

simply combine the previous two methods in two steps :

• 1st Step: The number of candidates is reduced to a smaller subset of all the nodes

thanks to the first method.

• 2nd Step: The candidates from the subset are ranked thanks to the second method.

Eventually a smaller and more reliable ranking is obtained, combining the advantages of

both methods. The two methods are complementary, since they both work best in differ-

ent conditions. The first method yields good result for high probability of propagation,

whereas the second one benefits from low probability of propagation. The performances

of this global algorithm are investigated in Chapter 5.

Chapter 5

Results analysis

5.1 Settings of the performance analysis

In order to assess the performances of the algorithm described in Section 4.3.3, it is needed

to run tens of simulation to obtain average performances. A performance test has been

set up with the following parameters. They remain the same across all the tests, except

if stated otherwise.

• Small World Graph have been used, except in Section 5.2.4 where different types of

graphs are tested. Hence, the performances analysis are run on synthetic data.

• 250 nodes in the graph

• 10% of monitoring nodes, except in Section 5.2.3 where the influence of the number

of monitoring node is investigated

• Probability of propagation p ranging between 0.2 and 0.9

• 20 rumours propagating in the network.

• 250 simulations with the same parameters have been run each time and the results

are averaged over these 250 trials.

42

5.2. Performances analysis 43

In order to speed up the performances analysis, test have been run in parallel. The

file Bench parallel.py starts the benchmarking made by runHistoSimulation in the

file benchmark histo.py. Each instance of runHistoSimulation is a unique simulation.

These simulations are made in parallel on several cores. The number of cores depend on

the machine. In this case, test have been run on the batch2 server from the Department

of Computing, using a total of 30 cores.

In this section, different aspect of the detection will be investigated and assessed:

• The probability of detection. This probability represents the probability that

the best candidate appointed by the algorithm is indeed the real source. In Sec-

tion 5.2.2, this probability will be compared with the probability of the real source

being in the first 5 candidates as well as the first 10.

• The rank of the real source S. The rank of the real source is the rank of the

real source S yield by the algorithm, averaged over the 250 simulations for each set

of parameters.

• The distance from the 1st candidate to the real source. This is the distance

in terms of hops, in the graph, from the first candidate to the real source.

5.2 Performances analysis

5.2.1 Metrics comparison

The Figure 5.1 shows the probability of detection for standards parameters (N = 250,

M = 25, R = 20, small world graph, with 250 simulations). One can see that the L2 norm

outperforms the χ2 distance. This is the case for all the tests made. Therefore, starting

from now and until the end of the report, only the results obtained with the L2 norm will

be shown.

44 Chapter 5. Results analysis

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability of propagation
0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

ab
ilit

y
of
 d
et
ec

tio
n

Comparison of L2 and χ2

L2 norm
χ2 distance

Figure 5.1: Comparison between the two metrics with
standards parameters

This experimental result is quite surprising in so far as the χ2 distance is supposed to be

better suited for distribution comparison than the L2 norm[9]. One can see that for low

probability of propagation the two metrics perform similarly. However when the prob-

ability of propagation increases, the L2 norm performs better. For high probability of

propagation both metrics are performing equally, because the first step of the global algo-

rithm (the reduction of the number of candidates) is doing most of the job by providing

a really reduced set of candidates.

In the middle zone, where p ∈ [0.3; 0.7], χ2 distance is outperformed. This can be ex-

plained by the fact that the probability of propagation is too high to form a smooth

distribution. Too much rumours arrive at the same step. Therefore it produces too large

bins for χ2.

5.2. Performances analysis 45

5.2.2 Standard parameters results

Probability of detection

This section present the results obtained for standard parameters (N = 250, M = 25,

R = 20, small world graph, with 250 simulations). Figure 5.2 show the probability of

detection against the probability of propagation if the first candidate is picked, if the first

five are considered and eventually the first ten.

Figure 5.2: Comparison of the different probability of
detection for different assumption : the source is the
first one, the source is in the first five and the source
is in the first ten.

From Figure 5.2, one can see that there is more than 80% of chance to identify the source

if the probability of propagation is greater of equal to 0.4. There is a negligible difference

between picking the first 5 and the first 10 : around 5% maximum. Hence, picking the

first five candidates is the best assumption of the two since it yields comparable results

and divide by two the number of possible candidates. Furthermore, the real source is

100% of the time in the first five candidates provided that the probability of propagation

46 Chapter 5. Results analysis

is greater or equal to five.

Average rank of the source and distance from the first candidate to the source

Table 5.1 shows the average rank of the real source and distance from the first candidate

to the source, with standards parameters, for different probabilities of propagation. The

index start at 0, therefore the best candidate has the rank 0, the worse has the rank

Card(C).

p avg. rank of S dist. from 1st to S

0.2 8.29 1.345

0.3 1.265 0.605

0.4 0.19 0.27

0.5 0.055 0.105

0.6 0.007 0.072

0.7 0.005 0.092

0.8 0.002 0.112

0.9 0.002 0.048

Table 5.1: Average rank of the real source and dis-
tance from the first candidate to the source for stan-
dards parameters.

It is clear that the rank of the real source quickly tends to the first position (the ranking

stats at 0). Furthermore, the distance between the real source and the first candidates

reduces as the probability of propagation increases, but it does not exceed 2 hops. It

means that the first candidate stays close to the real source, topologically speaking in the

graph. Therefore even if the real source has not been identified, the best candidate is

likely to be a relative of the real source.

5.2. Performances analysis 47

Overall

Overall, the probability of detection increases with the probability of detection. The

source is detected at least 90% of the time, if the probability of detection is greater or

equal to 0.5. It is possible to isolate a group of five candidates containing the source for a

probability grater or equal to 0.3. Even if the probability of propagation is low (p ≤ 0.3),

the best candidates is close, topologically speaking, to the real source, and their are good

chances that the two are relatives, or at least in the same friend group.

5.2.3 Influence of the percentage of monitoring nodes

With the standard parameters, 10% of the nodes are acting as monitoring nodes. However,

it might not always be possible to get this amount of monitoring nodes. Consequently,

the influence of the number of monitoring nodes must be investigated. All the other pa-

rameters are standard.

The Figure 5.3 and the Table 5.2 show the results of the performances analysis when there

are 10%, 4.8% and 2% of monitoring nodes in the network. Since there are 250 nodes, 5%

of 250 is 12.5, which is not an integer. Therefore, 4.8% has been chosen, which represents

12 monitoring nodes for a 250 nodes graph.

48 Chapter 5. Results analysis

Figure 5.3: Probability of detection for different per-
centage of monitoring nodes

10% of monitoring nodes 4.8% of monitoring nodes 2% of monitoring nodes
p avg. S rank d from 1st to S avg. S rank d from 1st to S avg. S rank d from 1st to S

0.2 8.29 1.345 24.28 2.24 36.48 3.184
0.3 1.265 0.605 4.776 1.448 17.148 3.152
0.4 0.19 0.27 1.16 0.92 9.304 2.816
0.5 0.055 0.105 0.512 0.732 5.2 2.292
0.6 0.007 0.105 0.196 0.492 2.328 1.924
0.7 0.005 0.075 0.208 0.42 2.264 2.004
0.8 0.002 0.069 0.168 0.328 2.276 2.172
0.9 0.002 0.053 0.14 0.184 1.584 1.656

Table 5.2: Average rank of the real source and dis-
tance from the first candidate for different percentage
of monitoring nodes.

Overall

Having only 2% of the node acting as monitoring nodes yields poor results. Regardless

of the probability of propagation, it is never possible to achieve a better probability of

detection than 0.55. If 5% of the nodes are monitoring nodes, the probability of detection

5.2. Performances analysis 49

is significantly better than with 2% of the nodes (around 10 to 15% higher). Moreover, for

probability of propagation, higher than 0.5, 5% of monitoring node is performing almost

as well as in the case with 10% of monitoring nodes (less than 5% worse). Choosing 5%

of monitoring nodes seems to be the ideal trade-off between feasibility and performances,

although, for low probability of propagation (p ≤ 0.3), having more monitoring node is

recommended.

5.2.4 Type of graphs

It has been explained in Section 3.4.1 that the study is focussed on Small World Networks

due to their valuable properties regarding human communities modelling. However, it is

important that the performances of the detection algorithm should be assessed on other

types of graph. It shows to what extend the detection algorithm applied on other graphs

is reliable.

Figure 5.4 and Table 5.3 show the results of performances analysis for small world graphs,

scale free graphs and tree graphs. The tree graphs used are balanced tree graphs of depth

3 and 5 neighbours per node (plus their root node), for a total of 155 nodes.

50 Chapter 5. Results analysis

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probability of propagation
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
Pr
op

ab
ilit

y
of
 d
et
ec

tio
n

Probability of Detection for different types of graphs

Small World
Tree graph
Scale free graph

Figure 5.4: Probability of detection for different types
of graphs

Small World Graph Balanced Tree Graph Scale Free Graph
p avg. S rank d from 1st to S avg. S rank d from 1st to S avg. S rank d from 1st to S

0.2 8.29 1.345 16.208 2.204 1.78 0.928
0.3 1.265 0.605 10.04 2.032 1.868 0.84
0.4 0.19 0.27 6.844 1.928 1.52 0.812
0.5 0.055 0.105 7.38 2.0 1.72 0.824
0.6 0.007 0.105 6.628 2.028 1.248 0.748
0.7 0.005 0.075 5.428 2.024 1.172 0.776
0.8 0.002 0.069 5.808 2.044 1.036 0.732
0.9 0.002 0.053 5.168 1.98 1.04 0.7

Table 5.3: Average ranking of the real source S and
distance from the first candidate to the source for dif-
ferent types of graphs

Overall

The detection algorithm performs significantly better on small world graphs than on the

other types of graphs (around 30% better at least for p ≥ 0.4). It is possible to achieve a

probability of detection up to 0.6 for the scale free graph, however it requires a very high

5.2. Performances analysis 51

probability of propagation (p ∼ 0.9). On tree graphs, the algorithm barely improved the

detection of 10% from p = 0.2 to p = 0.9. Furthermore, it is not possible to achieve a

correct detection more than 35% of the time on that type of graph.

Chapter 6

Conclusion

6.1 Overall remarks

This project aimed to provide a solution to the problem of detecting a source of rumour

in a social network. This detection is based on the usage of a subset of nodes converted

into monitoring nodes which report the steps of their infections by rumours. The key

aspect of this problem is the usage of the time based information given by the monitoring

nodes, due to several rumours propagating in the network, whereas the previous research

papers focused on the knowledge of the full infected node subset, once the rumours had

spread.

The proposed solution is based on two different usages of the information given by the

monitoring nodes. First, using the earliest time of infection per monitoring node allows

to draw conclusions regarding the maximum distance at which the source can be. Then, a

subset of candidate nodes can be established. Secondly, the rumours time of arrival scat-

tering allows to establish an experimental cumulative distribution of the rumours steps

of arrival. By comparing this distribution to the theoretical one, the candidates can be

ranked. The global detection algorithm combine these two technique to produce a global

52

6.2. Future Work 53

ranking of the candidates.

The detection algorithm have been tested on small world graphs, tree graphs and scale

free graphs. It as also been tested in different conditions, with different numerbers of

monitoring nodes and different probability of rumour propagation. Overall, the algorithm

allows detection more than 80% of the time, provided that the probability of propagation is

greater or equal to 0.4 and there are 10% of monitoring nodes. Under the same conditions,

the probability that the source is in the firt five candidates is greater than 0.9. The ideal

trade-off between feasability and performances regarding the number of monitoring nodes

is arround 5%. The detection algorithm works better on small world graph than on the

other types of networks.

6.2 Future Work

The simulation of the rumours propagation, either in this report or in the research papers,

is made with the Susceptible-Infected model. If this simulation works well for epidemics

or desease spreading, this is not the best modelization possible for rumour spreading. Us-

ing either triadic closures[3] or setting the threshold described in this report higher than

1 would model the fact that people might wait to hear the rumour from several different

persons before stating to trust it and spread it.

The number of sources has been kept to one in this project. However, it might be inter-

esting to perform some research for multiple sources spreading.

The detection algorithm assume that the start of the infection is precisely known, some

effort should be put into the source detection when only a relative time of infection is

known between the monitoring nodes.

54 Chapter 6. Conclusion

The rumour propagation is discretized. A more realistic approach would consist in a con-

tinuous time spreading, based on a Poisson process.

Eventually, performing tests on real datasets instead of synthetic ones could allows to

investigate the performances of the detection algorithm on real cases.

Bibliography

[1] Béla Bollobás, Christian Borgs, Jennifer Chayes, and Oliver Riordan. “Directed

Scale-Free Graphs”.

[2] E W Dijkstra. “A Note on Two Problems in Connexion with Graphs”. Numerische

Mathematlk, 271(1):269–271, 1959.

[3] D. Easley and J. Kleinberg. “Networks, Crowds, and Markets: Reasonning about a

Highly Connected World”. Cambridge University Press, 2010.

[4] Michael L. Fredman and Robert Endre Tarjan. “Fibonacci heaps and their uses in

improved network optimization algorithms”. Journal of the ACM, 34(3):596–615,

1987.

[5] Adrien Guille, Hakim Hacid, Cecile Favre, and Djamel A. Zighed. “Information

diffusion in online social networks”. ACM SIGMOD Record, 42(1):17, 2013.

[6] Jonathan Hartley. Timecomplexity - python wiki, 2017.

[7] Wuqiong Luo, Wee Peng Tay, and Mei Leng. “Identifying Infection Sources and

Regions in Large Networks”. 2013.

[8] Pádraig MacCarron, Kimmo Kaski, and Robin Dunbar. “Calling Dunbar’s Num-

bers”. arXiv preprint arXiv:1604.02400, 2016.

[9] Krystian Mikolajczyk. Lecture notes in pattern recognition, 2016.

[10] S. Milgram. “The Small World Problem”. Psychology Today, 1967.

55

56 BIBLIOGRAPHY

[11] Eunsoo Seo, Prasant Mohapatra, and Tarek Abdelzaher. “Identifying rumors and

their sources in social networks”. pages 83891I–83891I–13, 2012.

[12] Devavrat Shah and Tauhid Zaman. “Finding Rumor Sources on Random Trees”.

2011.

[13] Devavrat Shah and Tauhid Zaman. “Rumors in a network: Who’s the culprit?” IEEE

Transactions on Information Theory, 57(8):5163–5181, 2011.

[14] Devavrat Shah and Tauhid Zaman. “Rumor centrality”. ACM SIGMETRICS Per-

formance Evaluation Review (ACM Digital Library), 40(1):199–210, 2012.

[15] D J Watts and S H Strogatz. “Collective dynamics of ’small-world’ networks”. Nature,

393(6684):440–442, 1998.

[16] Wayne W Zachary. “An Information Flow Model for Conflict and Fission in Small

Groups”. Journal of Anthropological Research, 33(4):452–473, 1977.

Appendices

57

58

Appendices

networkUtils.py

1 Author : Robin Dupont (robin.dpnt@gmail.com)

2 Imperial College Longon 2016/2017

3 MSc Communication and Signal Processing

4

5 port matplotlib.pyplot as plt

6 port networkx as nx

7 port random

8 port numpy as np

9 om scipy.special import comb

10

11

12 de_size_param = 40

13

14

15 f generateGraph(myNumNodes,myLinkProba,myGraphType):

16

17 myGraphType = myGraphType%6

18

19 myGraph = nx.karate_club_graph()

20

21 if myGraphType == 1:

22 # Small World

23 myGraph = nx.watts_strogatz_graph(myNumNodes, 5, myLinkProba)

24 if myGraphType == 2:

25 # Tree

26 myGraph = nx.balanced_tree(4,3)

27 if myGraphType == 3:

28 # Random Graph

29 myGraph = nx.fast_gnp_random_graph(myNumNodes, 2*1/myNumNodes)

30 if myGraphType == 4:

31 # Random - power Law

32 myGraph = nx.random_powerlaw_tree(myNumNodes)

33 if myGraphType == 5:

34 # Karate club

35 myGraph = nx.karate_club_graph()

36 if myGraphType == 6:

37 # Scale Free Graph

38 myGraph = nx.scale_free_graph(myNumNodes).to_undirected()

39

40 return myGraph

41

59

42 Initiate the parameters of the graph

43 f initGraphParam(myG,myNumRum,myThreshMax):

44 for i in range(myNumRum):

45 nx.set_node_attributes(myG, 'infected'+str(i+1), False) # Init infection state

46 nx.set_node_attributes(myG, 'counter'+str(i+1), 1)

47 for j in myG.nodes():

48 myG.node[j]['counter'+str(i+1)] = list() # Generate infector list

49

50 nx.set_node_attributes(myG, 'threshold', 1)

51 for i in myG.nodes():

52 myG.node[i]['threshold'] = random.randint(1,myThreshMax) # Init threshold

53 return myG

54

55 Initiate the source of the rumours

56 f initSourceNode(myG,myNumRum):

57 nodeList = myG.nodes()

58 sources = []

59 index = random.choice(nodeList)

60 for i in range(myNumRum):

61 myG.node[index]['infected'+str(i+1)] = 1

62 sources.append(index)

63 sources = list(set(sources))

64 return myG, sources

65

66

67 f initMonitoringNodes(myG,myMonitorNum,mySources,myNumRum):

68 nodeList = myG.nodes()

69 monitorList = list()

70

71 for i in range(myMonitorNum):

72 monitorList.append(random.choice(nodeList))

73

74 while len(list(set(monitorList))) != myMonitorNum and len(set(mySources).intersection(set(monitorList))) != 0 :

75 monitorList = list()

76 for i in range(myMonitorNum):

77 monitorList.append(random.choice(nodeList))

78 for i in monitorList:

79 for k in range(myNumRum):

80 myG.node[i]['detected'+str(k+1)] = False

81

82 return myG,monitorList

83

84

85 return myG

86

87 f colorList(myG,myNumRum):

88 infected=[]

60

89 notInfected=[]

90 for j in range(myNumRum):

91 for i in myG.nodes():

92 if myG.node[i]['infected'+str(j+1)]:

93 infected.append(i)

94 else :

95 notInfected.append(i)

96 return infected, notInfected

97

98

99 f drawColoredGraph(myG,myPos,myNumRum,mySources,myMonitors=None,myIndex=None):

100 infect, notInfect = colorList(myG,myNumRum)

101 if myMonitors != None:

102 nx.draw_networkx_nodes(myG, myPos, myMonitors, node_color='c',

103 node_size=25*node_size_param,label='Monitoring Node')

104 nx.draw_networkx_nodes(myG, myPos, infect, node_color='r', node_size=15*node_size_param,label='Infected Node')

105 nx.draw_networkx_nodes(myG, myPos, notInfect, node_color='#2ca02c', node_size=5*node_size_param)

106 nx.draw_networkx_nodes(myG, myPos, mySources, node_color='#1f77b4',

107 node_size=5*node_size_param,label='Rumour Source')

108 nx.draw_networkx_edges(myG, myPos, width=2.0,alpha=0.3)

109 plt.legend(scatterpoints=1,fontsize=20,loc=(0,0))

110 plt.axis('off')

111 if myIndex != None:

112 plt.savefig('reportFigs/figT' + str(myIndex) + '.eps')

113 plt.savefig('reportFigs/figT' + str(myIndex) + '.png')

114

115 plt.show()

116 #return myFig

117 return None

118

119

120 f drawColoredGraph2(myG,myPos,myNumRum,mySources,myMonitors,myDetected):

121 infect, notInfect = colorList(myG,myNumRum)

122 labs = {}

123 for node in myG.nodes():

124 if node in myDetected:

125 labs[node]=node

126 nx.draw_networkx_nodes(myG, myPos, infect, node_color='r', node_size=15*node_size_param,label='bite')

127 nx.draw_networkx_nodes(myG, myPos, notInfect, node_color='g', node_size=5*node_size_param,label='bite')

128 nx.draw_networkx_nodes(myG, myPos, myMonitors, node_color='c', node_size=40*node_size_param,label='bite')

129 nx.draw_networkx_nodes(myG, myPos, myDetected, node_color='y', node_size=50*node_size_param,label='bite')

130 nx.draw_networkx_nodes(myG, myPos, mySources, node_color='b', node_size=5*node_size_param,label='bite')

131 nx.draw_networkx_edges(myG, myPos, width=1.0,alpha=0.1)

132 nx.draw_networkx_labels(myG, pos=myPos,labels=labs)

133 plt.axis('off')

134 plt.savefig('./TestFigs/figEnd.png')

135 plt.show()

61

136 return None

137

138

139

140

141

142 f infectionForward(myG, myProba, myNumRum):

143 myG2 = myG

144

145 for k in range(myNumRum):

146 for i in myG.nodes():

147 if myG.node[i]['infected'+str(k+1)]:

148 neiList = myG.neighbors(i)

149 for j in neiList:

150 if random.random() < myProba:

151 myG2.node[j]['counter'+str(k+1)].append(i)

152 myG2.node[j]['counter' + str(k + 1)] = list(set(myG2.node[j]['counter'+str(k+1)]))

153 for l in myG2.nodes():

154 if len(myG2.node[l]['counter'+str(k+1)]) >= myG2.node[l]['threshold']:

155 myG2.node[l]['infected' + str(k + 1)] = True

156

157 return myG2

158

159

160 f infectionForwardSingle(myG, myProba, myNumRum):

161 myG2 = myG

162

163 for k in range(myNumRum):

164 for i in myG.nodes():

165 if myG.node[i]['infected'+str(k+1)]:

166 neiList = myG.neighbors(i)

167 j = random.choice(neiList)

168 if random.random() < myProba:

169 myG2.node[j]['counter'+str(k+1)].append(i)

170 myG2.node[j]['counter' + str(k + 1)] = list(set(myG2.node[j]['counter'+str(k+1)]))

171 for l in myG2.nodes():

172 if len(myG2.node[l]['counter'+str(k+1)]) >= myG2.node[l]['threshold']:

173 myG2.node[l]['infected' + str(k + 1)] = True

174

175 return myG2

176

177

178 f getInfectedList (myG,myNumRum):

179

180 infected = []

181 for j in range(myNumRum):

182 for i in myG.nodes():

62

183 if myG.node[i]['infected'+str(j+1)]:

184 infected.append(i)

185 infected = list(set(infected))

186

187 return infected

188

189 f isAllInfected(myG,myNumRum):

190 myBool = True

191 for j in range(myNumRum):

192 for i in myG.nodes():

193 if not myG.node[i]['infected'+str(j+1)]:

194 myBool = False

195 return myBool

196

197 f estimateInfected(myG,myNumRum,myRumId):

198 counter = 0

199

200 for i in myG.nodes():

201 if myG.node[i]['infected'+str(myRumId)]:

202 counter +=1

203

204 return counter

205

206

207 f findNeighDegN(myG, mySource, myDeg):

208 path_lengths = nx.single_source_dijkstra_path_length(myG, mySource)

209 neigh = [node for node, length in path_lengths.items() if length == myDeg]

210 return neigh

211

212

213

214

215 f findPossibleSets(myG,mySources,myTrig,myNumRum):

216 possibleSets = []

217 for s in myTrig:

218 curDeg = s[2]

219 while curDeg > 1 :

220 curSet = findNeighDegN(myG,s[0],curDeg)

221 curDeg -= 1

222 possibleSets.append(curSet)

223 print(possibleSets)

224

225

226 initSet = set(possibleSets[0])

227 for i in range(len(possibleSets)-1):

228 initSet = initSet.intersection(possibleSets[i+1])

229 return list(initSet)

63

230

231

232 f findPossibleSets2(myG,mySources,myTrig,myNumRum):

233 possibleSets = []

234 for s in myTrig:

235 curDeg =s[2]

236 while curDeg>1:

237 curSet = findNeighDegN(myG,s[0],curDeg)

238 curDeg-=1

239 if len(curSet)>0:

240 possibleSets.append(curSet)

241 print(possibleSets)

242

243 array = np.zeros((len(myG.nodes()),1))

244 for i in possibleSets :

245 for j in i:

246 array[j]+=1

247 arrayAsList = array.tolist()

248 maxVal = max(arrayAsList)

249 print(array)

250 print('Source : ',mySources[0],' Max : ',max(arrayAsList), ' value : ',arrayAsList[mySources[0]])

251 posList = list()

252 for i in range(len(array)):

253 if maxVal == array[i]:

254 posList.append(i)

255 return posList

256

257

258 f findSet2(myG, myCenterNode, myMaxDeg):

259 # Based on set intersection (not circle)

260 curSet = set()

261 curDeg = myMaxDeg

262 while (curDeg > 0):

263 tempoSet = set(findNeighDegN(myG, myCenterNode, curDeg))

264 curSet = curSet.union(tempoSet)

265 curDeg -= 1

266 return curSet

267

268

269 f calculProba(myPropagProba, myDist, mySteps):

270 # Compute the probability of a node at k steps of the source being infected by step n

271 p = myPropagProba

272 k = myDist

273 n = mySteps

274 result = 0

275 for i in range(0, n - k + 1):

276 result += comb(k + i - 1, i, exact=True) * pow(p, k) * pow(1 - p, i)

64

277 return result

simulation.py

1 Author : Robin Dupont (robin.dpnt@gmail.com)

2 Imperial College Longon 2016/2017

3 MSc Communication and Signal Processing

4

5 om networkUtils import *

6

7

8 f generateGraphReady(myNumNodes,myLinkProba,myMaxThreshold,myNumRumors,myNumMonitors,):

9 # mGraph generation

10 print("Starting Simulation")

11 mGraph = generateGraph(myNumNodes, myLinkProba, 1)

12 # Getting layout

13 pos = nx.spring_layout(mGraph)

14 # Setting default attributes

15 mGraph = initGraphParam(mGraph, myNumRumors, myMaxThreshold)

16 # Choosing the source

17 mGraph, myRumorSources = initSourceNode(mGraph, myNumRumors)

18 # Choosing the monitoring nodes

19 mGraph, myMonitorsList = initMonitoringNodes(mGraph, myNumMonitors, myRumorSources, myNumRumors)

20 return mGraph, pos, myRumorSources, myMonitorsList

21

22 f updateMonitorTrig(curStep,myMonitorTrigger,myMonitorList,myG,myNumRum):

23 for k in myMonitorList:

24 for l in range(myNumRum):

25 if myG.node[k]['infected' + str(l + 1)] and not myG.node[k]['detected' + str(l + 1)]:

26 myMonitorTrigger.append((k, l + 1, curStep))

27 myG.node[k]['detected' + str(l + 1)] = True

28 # Sort by monitoring node and by rumour index

29 myMonitorList = sorted(myMonitorTrigger, key=lambda x: (x[0], x[1]))

30 return myMonitorList

31

32

33 f printMonitorTrig(myMonitorTrig):

34 print('\nMonitoring Nodes :')

35 prev = 0

36 for i in myMonitorTrig:

37 if prev == 0 or i[0] != prev:

38 print('Monitoring node number : ', i[0], '\n\tinfected by rumor : ', i[1], '\tat step : ', i[2])

39 prev = i[0]

40 else:

41 print('\tinfected by rumor : ', i[1], '\tat step : ', i[2])

65

42 prev = i[0]

43 return None

44

45 f findSet(myG,mySourceNode,myRadius):

46 curSet = findNeighDegN(myG,mySourceNode,myRadius)

47 return curSet

48

49

50

51 __name__ == '__main__':

52

53 # Parameters definition

54 numRumors = 4

55 maxThreshold = 1

56 numMonitors = 10

57 propagProba = 1

58 numNodes = 50

59 linkProba = 0.2

60 monitorTrigger = list()

61 numStep = 100

62

63

64 Graph, Pos, rumorSources, monitorsList = generateGraphReady(numNodes,linkProba,maxThreshold,numRumors,numMonitors)

65 drawColoredGraph(Graph, Pos, numRumors, rumorSources, monitorsList)

66 print("Starting infection")

67 infections = [[] for n in range(numRumors)]

68

69 for j in range(5):

70 print("==\n\n\n\n\n\n\n\n==")

71 for i in Graph.nodes():

72 if i in monitorsList:

73 print("Node ",str(i),"\t",Graph.node[i])

74 Graph = infectionForward(Graph, propagProba, numRumors)

75 monitorTrigger = updateMonitorTrig(j,monitorTrigger,monitorsList,Graph,numRumors)

76 print(monitorTrigger)

77 printMonitorTrig(monitorTrigger)

78 drawColoredGraph(Graph, Pos, numRumors, rumorSources, monitorsList)

79 plt.show()

detectionUtils.py

1 Author : Robin Dupont (robin.dpnt@gmail.com)

2 Imperial College Longon 2016/2017

3 MSc Communication and Signal Processing

66

4

5 om networkUtils import *

6

7

8 f chiDist(histo1, histo2):

9 PmQ2 = np.power(histo1 - histo2, 2)

10

11 # prevent 0 values in division

12 histo1[histo1 == 0] = np.finfo(float).eps

13 histo2[histo2 == 0] = np.finfo(float).eps

14 PpQ = histo1 + histo2

15 vectRes = np.divide(PmQ2, PpQ)

16 res = np.sum(vectRes)

17 return np.sqrt(res)

18

19

20 f createHistoForMonitor(monitorTrigger2,monitorsList,numRumors):

21 ################ STEP 2

22 # Create the histogram of rumor reception step for each monitoring node

23 # Find the maximum number of steps :

24 maxStep = -1

25 for step in monitorTrigger2:

26 if step[2] > maxStep:

27 maxStep = step[2]

28

29 # create array for each monitoring node

30 HistoDict = dict()

31

32 # Fill in the array

33 for monitor in monitorsList:

34 HistoDict[monitor] = np.zeros((maxStep + 1, 1))

35 for elem in monitorTrigger2:

36 if monitor == elem[0]:

37 HistoDict[monitor][elem[2]] += 1

38 HistoDict[monitor] = np.cumsum(HistoDict[monitor]) / numRumors

39

40 return HistoDict,maxStep

41

42

43

44 f findAllPossibleCandidates(monitorTrigger,Graph):

45 ################ STEP 3

46 # Find all possible candidates based on set intersections

47 setList = []

48

49 for i in monitorTrigger:

50 nodeSet = findSet2(Graph, i[0], i[2])

67

51 setList.append(nodeSet)

52

53 finalSet = set.intersection(*setList)

54 finalList = list(finalSet)

55

56 return finalList

57

58

59 f dictOfHistoForPossibleSourcesPerMonitor(monitorsList,finalList,maxStep,propagProba,Graph):

60 ################ STEP 4

61 # Create the histogram for each monitoring node, for each possible source

62 # i.e. Step 1: the whole graph, Step 2: only the possible sources determined with set intersection.

63 DictOfPossibleHistPerMonitor = {}

64 for monitor in monitorsList:

65 sourceHisto = {}

66 monitorToTest = monitor

67 for source in finalList:

68 if source not in monitorsList:

69 sourceHisto[source] = np.zeros((maxStep + 1, 1))

70 for i in range(0, maxStep + 1):

71 sourceHisto[source][i] = calculProba(propagProba,

72 len(nx.shortest_path(Graph, source, monitorToTest)) - 1, i)

73 DictOfPossibleHistPerMonitor[monitor] = sourceHisto

74

75 return DictOfPossibleHistPerMonitor

76

77

78 f computeScores(finalList,monitorsList,DictOfPossibleHistPerMonitor,HistoDict,rumorSources):

79

80 scoreDictL2 = {}

81 scoreDictChi2 = {}

82 for i in finalList:

83 scoreDictL2[i] = 0

84 scoreDictChi2[i] = 0

85

86 for monitorToTest in monitorsList:

87 monitorRankingL2 = []

88 monitorRankingChi2 = []

89

90 for source in finalList:

91

92 if source not in monitorsList:

93

94 d = np.linalg.norm(DictOfPossibleHistPerMonitor[monitorToTest][source] - HistoDict[monitorToTest])

95 d2 = chiDist(DictOfPossibleHistPerMonitor[monitorToTest][source],

96 np.transpose(HistoDict[monitorToTest][np.newaxis]))

97 monitorRankingL2.append((source,d))

68

98 monitorRankingChi2.append((source,d2))

99

100 monitorRankingL2 = sorted(monitorRankingL2, key=lambda x: x[1])

101 monitorRankingChi2 = sorted(monitorRankingChi2, key=lambda x: x[1])

102

103 monitorRankingL2 = [elem[0] for elem in monitorRankingL2]

104 monitorRankingChi2 = [elem[0] for elem in monitorRankingChi2]

105

106 for i in finalList :

107 if i not in monitorsList:

108 scoreDictL2[i] += monitorRankingL2.index(i)

109 scoreDictChi2[i] += monitorRankingChi2.index(i)

110

111 scoreListL2 = sorted(scoreDictL2.items(),key=lambda x: x[1])

112 scoreListChi2 = sorted(scoreDictChi2.items(),key=lambda x: x[1])

113 scoreListL2 = [elem[0] for elem in scoreListL2]

114 scoreListChi2 = [elem[0] for elem in scoreListChi2]

115

116

117 try:

118 if rumorSources[0] in scoreListL2 :

119 return scoreListL2.index(rumorSources[0]),scoreListChi2.index(rumorSources[0]),len(finalList),scoreListL2[0]

120 else :

121 return len(finalList)-1,len(finalList)-1,len(finalList),scoreListL2[0]

122 # Catching the error

123 except :

124 print("ERROR ###################")

125 print(len(scoreListL2))

126 if rumorSources[0] in scoreListL2 :

127 return scoreListL2.index(rumorSources[0]),scoreListChi2.index(rumorSources[0]),len(finalList),max(rumorSources[0]-1,0)

128 else :

129 return len(finalList)-1,len(finalList)-1,len(finalList),max(rumorSources[0]-1,0)

benchmark histo.py

1 Author : Robin Dupont (robin.dpnt@gmail.com)

2 Imperial College Longon 2016/2017

3 MSc Communication and Signal Processing

4

5 om simulation import *

6 om detectionUtils import *

7

8

9 f runHistoSimulation(myI, myProba) :

10 ################ STEP 1

69

11 # Generate an graph with rumor spread

12

13 # Parameters definition

14 numRumors = 20

15 maxThreshold = 1

16 numMonitors = 20

17 propagProba = myProba

18 numNodes = 200

19 linkProba = 0.3

20 monitorTrigger = list()

21 numStep = 100

22

23 j = 0

24

25 Graph, Pos, rumorSources, monitorsList=generateGraphReady(numNodes, linkProba, maxThreshold, numRumors, numMonitors)

26

27 while (not isAllInfected(Graph, numRumors)):

28 Graph = infectionForward(Graph, propagProba, numRumors)

29 # j+1 because j=0 is step 1

30 monitorTrigger = updateMonitorTrig(j + 1, monitorTrigger, monitorsList, Graph, numRumors)

31 j += 1

32

33 monitorTrigger2 = sorted(monitorTrigger, key=lambda x: (x[0], x[2]))

34 HistoDict,maxStep = createHistoForMonitor(monitorTrigger2,monitorsList,numRumors)

35 finalList = findAllPossibleCandidates(monitorTrigger,Graph)

36 DictOfPossibleHistPerMonitor = dictOfHistoForPossibleSourcesPerMonitor(monitorsList, finalList,

37 maxStep, propagProba, Graph)

38 scoreL2, scoreChi2, numCandidat, bestCandidat = computeScores(finalList, monitorsList,

39 DictOfPossibleHistPerMonitor, HistoDict, rumorSources)

40 distToSource = len(nx.shortest_path(Graph, source=rumorSources[0], target=bestCandidat))-1

41

42 print("Simulation ",myI, "done")

43

44 return scoreL2, scoreChi2, Graph, distToSource

45

46

47 __name__ == '__main__':

48 runHistoSimulation(1, 0.2)

Bench Parallel.py

1 Author : Robin Dupont (robin.dpnt@gmail.com)

2 Imperial College Longon 2016/2017

3 MSc Communication and Signal Processing

4

70

5 om benchmark_histo import *

6 om joblib import Parallel, delayed

7 port multiprocessing

8 port os

9

10

11 os.name == 'nt' :

12 from win10toast import ToastNotifier

13

14 __name__ == '__main__':

15 if os.name == 'nt':

16 toaster = ToastNotifier()

17

18 probas = [0.2,0.3,0.4,0.5,0.6,0.7,0.9]

19

20 num_cores = multiprocessing.cpu_count()

21

22 print("Starting benchmarking on ",num_cores," cores")

23

24 for proba in probas:

25

26 inputs = range(0,3)

27

28 results = Parallel(n_jobs=num_cores-1)(delayed(runHistoSimulation)(i,proba) for i in inputs)

29

30 scoreL2 = [v[0] for v in results]

31 scoreChi2 = [v[1] for v in results]

32 Graphs = [v[2] for v in results]

33 distsToSource = [v[3] for v in results]

34

35 print("\nGlobal Score for L2 : ",np.mean(scoreL2))

36 print("Global Score for Chi2 : ",np.mean(scoreChi2))

37 print("dists : ", distsToSource)

38

39 # Compute proba of detection First one

40 probaDetectL2 = []

41 probaDetectChi2 = []

42 # Compute proba of detection first 5

43 probaDetect5L2 = []

44 # Compute proba of detection first 10

45 probaDetect10L2 =[]

46

47

48 for score in scoreL2 :

49 if score == 0 :

50 probaDetectL2.append(1)

51 else:

71

52 probaDetectL2.append(0)

53 if score <= 4:

54 probaDetect5L2.append(1)

55 else:

56 probaDetect5L2.append(0)

57 if score <=9:

58 probaDetect10L2.append(1)

59 else:

60 probaDetect10L2.append(0)

61

62 moyProba = np.mean(probaDetectL2)

63 moyProba5 = np.mean(probaDetect5L2)

64 moyProba10 = np.mean(probaDetect10L2)

65

66

67 for score in scoreChi2:

68 if score == 0:

69 probaDetectChi2.append(1)

70 else:

71 probaDetectChi2.append(0)

72

73 moyProbaChi2 = np.mean(probaDetectChi2)

74

75

76 moyDist = np.mean(distsToSource)

77

78 print("All proba L2", probaDetectL2)

79 print("Global Proba L2: ",moyProba)

80 print("Global Proba Chi2: ",moyProbaChi2)

81 print(moyDist)

82 with open('results.txt','a') as f:

83 f.write("Proba = "+str(proba)+"\nGlobal Score for L2 : " + str(np.mean(scoreL2)) +

84 "\nGlobal Score for Chi2 : "+ str(np.mean(scoreChi2))+ "\nProba Detect L2 " +

85 str(moyProba)+ "\nProba Bo5 L2 " + str(moyProba5)+ "\nProba Bo10 L2 " + str(moyProba10)+

86 "\n Mean min dist to real source : " + str(moyDist) +"\n")

87

88 if os.name == 'nt':

89 toaster.show_toast("Simulation Over",

90 "P: "+str(proba)+" L2: "+str(np.mean(scoreL2))+" Chi2: "+str(np.mean(scoreChi2)),

91 duration=60)

